Skip to main content
Log in

Graphene oxide–SnO2 nanocomposite: synthesis, characterization, and enhanced gas sensing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene oxide–tin oxide (GO–SnO2) nanocomposite has been successfully prepared by a facile method via a hydrothermal treatment of aqueous dispersion of graphene oxide in the presence of tin chloride. The combined characterizations including X-ray diffraction, Raman, transmission electron microscopy and Brunauer–Emmett–Teller technique N2 adsorption–desorption analyses indicate the successful formation of GO–SnO2 nanocomposite with average crystal size about 14 nm. The gas sensing performances to ethanol, acetone, toluene, formaldehyde were studied for the GO–SnO2 composition samples. The gas sensing results exhibit that GO doped can dramatically enhance the gas sensitivity to the test gases and increase the selectivity to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Gyger, M.C. Feldmann, N. Barsan, U. Weimar, Nanoscale Chem. Mater. 22, 4821 (2010)

    Article  Google Scholar 

  2. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Sensors 12, 2610 (2012)

    Article  Google Scholar 

  3. Z.D. Lin, N. Li, Z. Chen, P. Fu, Sens. Actuators B 239, 501 (2017)

    Article  Google Scholar 

  4. Y.J. Zhang, W. Zeng, Mater. Lett. 195, 217 (2017)

    Article  Google Scholar 

  5. I. Kim, A. Rothschild, H.L. Tuller, Acta Metall. 61, 974 (2013)

    Google Scholar 

  6. Y. Qu, H. Wang, H. Chen, J. Xiao, Z.D. Lin, K. Dai, RSC Adv. 5, 16446 (2015)

    Article  Google Scholar 

  7. Y. Zeng, T. Zhang, H.T. Fan, W.Y. Fu, G.Y. Lu, Y.M. Sui, J. Phys. Chem. C 113, 19000 (2009)

    Article  Google Scholar 

  8. G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli, C. Perego, Sens. Actuators B 13–14, 117 (1993)

    Article  Google Scholar 

  9. N. Van Hieu, N.A.P. Duc, T. Trung, M.A. Tuan, N.D. Chien, Sens. Actuators B 144, 450 (2010)

    Article  Google Scholar 

  10. T.M.N. Quan, N.V. Duy, N.T. Phuong, N.N. Trung, M.H. Chu, N.D. Hoa, Sens. Actuators B 238, 1120 (2017)

    Article  Google Scholar 

  11. C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont, T. Kerdcharoen, Sens. Actuators B 147(2), 392 (2010)

    Article  Google Scholar 

  12. A. Yang, X.M. Tao, R.X. Wang, Appl. Phys. Lett. 91, 133110 (2007)

    Article  Google Scholar 

  13. M. Bhatnagar, S. Dhall, V. Kaushik, A. Kaushal, B.R. Mehta, Sens. Actuators B 246, 336 (2017)

    Article  Google Scholar 

  14. G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sens. Actuators B 179, 61 (2013)

    Article  Google Scholar 

  15. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, Sens. Actuators B 190, 472 (2014)

    Article  Google Scholar 

  16. A. Venkatesan, S. Rathi, I.Y. Lee, J. Park, D. Lim, G.H. Kim, E.S. Kannan, Semicond. Sci. Technol. 31, 125014 (2016)

    Article  Google Scholar 

  17. Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, J. Mater. Chem. 21, 17360 (2011)

    Article  Google Scholar 

  18. A. Dankeaw, G. Poungchan, M. Panapoy, B. Ksapabutr, Sens. Actuators B 242, 202 (2017)

    Article  Google Scholar 

  19. Y. Qu, H. Wang, H.C hen, M.M. Han, Z.D. Lin, Sens. Actuators B 228, 595 (2016)

    Article  Google Scholar 

  20. B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu, H.J. Lai, Sens. Actuators B 101, 81 (2004)

    Article  Google Scholar 

  21. Z.Y. Zhang, X.M. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X.H. Xiao, C.Z. Jiang, J.C. Li, Nanoscale 7, 10078 (2015)

    Article  Google Scholar 

  22. H.C. Mu, K.K Wang, Z.G. Zhang, H.F. Xie, J. Mater. Chem. C 119, 10102 (2015)

    Google Scholar 

  23. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  24. Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi, J. Feng, Y.M. Ren, L.P. Song, F. Wei, ACS Nano 5, 191 (2011)

    Article  Google Scholar 

  25. Q. Dong, H. Su, J. Xu, D. Zhang, Sens. Actuators B 123, 420 (2007)

    Article  Google Scholar 

  26. Z. Jin, D. Nackashi, W. Lu, C. Kittrell, J.M. Tour, Chem. Mater. 22, 5695 (2010)

    Article  Google Scholar 

  27. Z. Wang, Z. Li, J. Sun, H. Zhang, W. Wang, W. Zheng, C. Wang, J. Phys. Chem. C 114, 6100 (2010)

    Article  Google Scholar 

  28. Z. Lin, W. Song, H. Yang, Sens. Actuators B 173, 22 (2012)

    Article  Google Scholar 

  29. L. Liu, H. Wang, X. Zhang, Z. Lin, Sens. Actuators B 237, 275 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by innovation Training Plan of Huazhong Agricultural University Student (No. 201510504083), Natural Science Foundation of Hubei province (No. 2016CFB554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Liu, W., Qu, Y. et al. Graphene oxide–SnO2 nanocomposite: synthesis, characterization, and enhanced gas sensing properties. J Mater Sci: Mater Electron 28, 16973–16980 (2017). https://doi.org/10.1007/s10854-017-7619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7619-6

Navigation