Skip to main content
Log in

The structural and multiferroic properties of Bi(1−x)Ce x Fe(1−x)(Mg0.5Ti0.5) x O3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi(1−x)Ce x Fe(1−x)(Mg0.5Ti0.5) x O3 (x = 0, 0.05, 0.10, 0.20, 0.25) thin films were synthesized by a sol–gel method. The structural, electrical and magnetic properties of Bi(1−x)Ce x Fe(1−x)(Mg0.5Ti0.5) x O3 (x = 0, 0.05, 0.10, 0.20, 0.25) thin films have been investigated. BiFeO3 thin film possessed a perovskite-type rhombohedral structure with space group R3c, and the average grain size decreased as the concentration of Ce, Mg and Ti co-doping increased. The leakage current densities of BiFeO3 co-doping with Ce, Mg and Ti ions exhibited a significant reduction compared with that of BiFeO3 thin film. Compared with the leakage current density of BiFeO3 thin film (4.19 × 10−4 A/cm2), the leakage current density of Bi0.80Ce0.20Fe0.80Mg0.10Ti0.10O3 thin film was reduced by about four orders of magnitude (1.05 × 10−8 A/cm2) under the electric field of 300 kV/cm. Well-defined ferroelectric loops were obtained and the polarization increased with the increase of Ce, Ti and Mg co-doping. The remanent polarization of Bi0.80Ce0.20Fe0.80Mg0.10Ti0.10O3 thin film (2P r  ~34.9 μC/cm2) was approximately four times larger than that of pure BiFeO3 (2P r  ~7.8 μC/cm2) under the applied field of 300 kV/cm. The magnetization under 10 kOe magnetic field of Bi(1−x)Ce x Fe(1−x)(Mg0.5Ti0.5) x O3 thin films increased with the increasing concentration of Ce, Mg and Ti co-doping. The improvement of magnetic behaviors for BiFeO3 co-doping with Ce, Mg and Ti ions thin films were observed significantly, cooperating with the enhanced ferroelectricity which indicated that BiFeO3 co-doping with Ce, Mg and Ti ions thin films will be the promising materials in the application to magnetoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, M. Zanella, J.B. Claridge, M.J. Rosseinsky, Adv. Funct. Mater. 26, 2523–2531 (2016)

    Article  Google Scholar 

  2. J. Liu, M.Y. Li, L. Pei, B.F. Yu, D.Y. Guo, X.Z. Zhao, J. Phys. D 42, 115409 (2009)

    Article  Google Scholar 

  3. C. M. Fernández-Posada, A. Castro, J. M. Kiat, F. Porcher, O. Penña, M. Algueró, H. Amorín, Nat. Commun. 7, 12772 (2016)

    Article  Google Scholar 

  4. Y.C. Hu, Z.Z. Jiang, K.G. Gao, G.F. Cheng, J.J. Ge, X.M. Lv, X.S. Wu, Chem. Phys. Lett. 534, 62–66 (2012)

    Article  Google Scholar 

  5. X.S. Xu, T.V. Brinzari, S. Lee, Y.H. Chu, L.W. Martin, A. Kumar, S. McGill, R.C. Rai, R. Ramesh, V. Gopalan, S.W. Cheong, J.L. Musfeldt, Phys. Rev. B 79, 134425 (2009)

    Article  Google Scholar 

  6. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  7. Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)

    Article  Google Scholar 

  8. I. Sosnowskat, T. Peterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835–4846 (1982)

    Article  Google Scholar 

  9. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)

    Article  Google Scholar 

  10. Z.C. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G.J. Fang, M.Y. Li, X.Z. Zhao, J. Appl. Phys. 104, 084106 (2008)

    Article  Google Scholar 

  11. B.K. Vashisth, J.S. Bangruwa, A. Beniwal, S.P. Gairola, A. Kumar, N. Singh, V. Verma, J. Alloys Compd. 698, 699–705 (2017)

    Article  Google Scholar 

  12. I. Bretos, R. Jiménez, C. Gutiérrez-Lázaro, I. Montero, M.L. Calzada, Appl. Phys. Lett. 04, 092905 (2014)

    Article  Google Scholar 

  13. D. Hong, S.W. Yu, J.R. Cheng, Curr. Appl. Phys 11, S255–S259 (2011)

    Article  Google Scholar 

  14. W. Cai, C.L. Fu, R.L. Gao, W.H. Jiang, X.L. Deng, G. Chen, J. Alloys Compd. 617, 240–246 (2014)

    Article  Google Scholar 

  15. H.R. Liu, Y.X. Sun, J. Phys. D 40, 7530–7533 (2007)

    Article  Google Scholar 

  16. N.M. Murari, R. Thomas, R.E. Melgarejo, S.P. Pavunny, R.S. Katiyar, J. Appl. Phys. 106, 014103 (2009)

    Article  Google Scholar 

  17. X.Z. Wang, H.R. Liu, B.W. Yan, J. Sol-Gel Sci. Technol. 47,124–127 (2008)

    Article  Google Scholar 

  18. M. Arora, M. Kumar, Ceram. Int. 41, 5705–5712 (2015)

    Article  Google Scholar 

  19. J. Zeng, Z.H. Tang, M.H. Tang, D.L. Xu, Y.G. Xiao, B.W. Zeng, L.Q. Li, Y.C. Zhou, J. Sol-Gel Sci. Technol. 72, 587–592 (2014)

    Article  Google Scholar 

  20. N. Li, J.T. Wu, Y.Q. Jiang, Z.X. Xie, L.S. Zheng, Z.G. Ye, J. Appl. Phys. 113, 054102 (2013)

    Article  Google Scholar 

  21. P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, P. Borisov, P. Stamenov, J.B. Claridge, M.J. Rosseinsky, Nature 525, 363–366 (2015)

    Article  Google Scholar 

  22. R.P. Yang, S.X. Lin, X.G. Fang, X.S. Gao, M. Zeng, J.M. Liu, J. Appl. Phys. 114, 233912 (2013)

    Article  Google Scholar 

  23. V. Verma, A. Beniwal, A. Ohlan, R. Tripathi, J. Mag. Mag. 394, 385–390 (2015)

    Article  Google Scholar 

  24. S. Gupta, M. Tomar, A.R. James, V. Gupta, J. Mater. Sci. 49, 5355–5364 (2014)

    Article  Google Scholar 

  25. J.W. Kim, C.M. Raghavan, S.S. Kim, J. Sol-Gel Sci. Technol. 76, 693–698 (2015)

    Article  Google Scholar 

  26. Z.C. Quan, H. Hu, S. Xu, W. Liu, G.J. Fang, M.Y. Li, X.Z. Zhao, J. Sol-Gel Sci. Technol. 48, 261–266 (2008)

    Article  Google Scholar 

  27. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  28. D.H. Kuang, P. Tang, X.D. Ding, S.H. Yang, Y.L. Zhang, J. Mater. Sci. 26, 3001–3007 (2015)

    Google Scholar 

  29. W. Sun, Z. Zhou, J. Luo, K. Wang, J.F. Li, J. Appl. Phys. 121, 064101 (2017)

    Article  Google Scholar 

  30. K.G. Yang, Y.L. Zhang, S.H. Yang, B. Wang, J. Appl. Phys. 107, 124109 (2010)

    Article  Google Scholar 

  31. J.G. Wu, J. Wang, J. Appl. Phys. 106, 104111 (2009)

    Article  Google Scholar 

  32. P. He, Z.L. Hou, C.Y. Wang, Z.J. Li, J. Jing, S. Bi, Ceram. Int. 43, 262–267 (2017)

    Article  Google Scholar 

  33. J. Liu, M.Y. Li, L. Pei, J. Wang, B.F. Yu, X. Wang, X.Z. Zhao, J. Alloys Compd. 493, 544–548 (2010)

    Article  Google Scholar 

  34. T. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766–772 (2007)

    Article  Google Scholar 

  35. Y. Wang, J. Li, J.Y. Chen, Y. Deng, J. Appl. Phys. 113, 103904 (2013)

    Article  Google Scholar 

  36. L.S. Chen, Y.H. He, J. Zhang, Z.Q. Mao, Y.J. Zhao, X. Chen, J. Alloys Compd. 604, 327–330 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61176010 and 61172027, Guangdong Natural Science Foundation under Grant No. 2014A030311049, Science and Technology Planning Project of Guangdong Province under Grant No. 2017A010103035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Xie, Y., Yang, S. et al. The structural and multiferroic properties of Bi(1−x)Ce x Fe(1−x)(Mg0.5Ti0.5) x O3 thin films. J Mater Sci: Mater Electron 28, 16895–16902 (2017). https://doi.org/10.1007/s10854-017-7608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7608-9

Navigation