Skip to main content
Log in

Stability and heating rate dependent metal–insulator transition properties of VO2 film grown by MBE

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High quality VO2 films with various thicknesses were grown on sapphire substrate by molecular beam epitaxy. X-ray diffraction and atomic force microscopy measurements indicated that high quality single phase VO2 films with dense and smooth surface as well as free of cracks were achieved. Via adjusting the thickness of VO2 films, the crystalline quality and the surface morphology of VO2 films are significantly improved. The stability and heating rate dependent metal–insulator transition property were investigated. The decreasing of transition temperature and the degeneracy of the stability of VO2 is mainly due to the surface degradation from air exposure and the interdiffusion between the substrate and VO2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.X. Li, W.X. Huang, L.W. Song et al., Adv. Mater. Res. 1120–1121, 158–167 (2015)

    Article  Google Scholar 

  2. J.M. Bian, M.H. Wang, L.H. Miao et al., Appl. Surf. Sci. 357, 282–286 (2015)

    Article  Google Scholar 

  3. R. Molaei, R. Bayati, F. Wu et al., J. Appl. Phys. 115, 164311 (2014)

    Article  Google Scholar 

  4. R. Geert, S. Marc, M. Koen et al., Appl. Phys. Lett. 98(16), 162902-162902-3 (2011)

    Google Scholar 

  5. C.Z. Wu, F.G. Feng, X. Yi, Chem. Soc. Rev. 42(12), 5157–5183 2013

    Article  Google Scholar 

  6. N.B. Aetukuri, A.X. Gray, M. Drouard et al., Nat. Phys. 9(10), 661–666 (2013)

    Article  Google Scholar 

  7. J.M. Bian, M.H. Wang, L.H. Miao et al., Appl. Surf. Sci. 357(A1), 282–286 (2015)

    Article  Google Scholar 

  8. Y.B. Li, Y.Y. Liu, J.C. Liu et al., J. Mater. Sci. 27, 4981–4987 (2016).

    Google Scholar 

  9. N.F. Quackenbush, H. Paik, M.J. Wahila et al., Phys. Rev. B 94, 085105 (2016)

    Article  Google Scholar 

  10. D. Brassard, S. Fourmaux, M. Jean-Jacques et al., Appl. Phys. Lett. 87, 051910 (2005)

    Article  Google Scholar 

  11. K. Appavoo, R.F. Haglund, Nano Lett. 11, 1025–1031 (2011)

    Article  Google Scholar 

  12. X.J. Wang, C.J. Liang, K.P. Guan, et al., Chin. Phys. B 17(9), 3512–3515 (2008).

    Article  Google Scholar 

  13. M.B. Sahana, G.N. Subbanna, S.A. Shivashankar, J. Appl. Phys. 92(11), 6495–6504 (2002)

    Article  Google Scholar 

  14. V.A. Klimov, I.O. Timofeeva, S.D. Khanin et al., Semiconductors 37(4), 370–374 (2003)

    Article  Google Scholar 

  15. G. Fu, A. Polity, N. Volbers et al., Thin Solid Films 515(4), 2519–2522 (2006)

    Article  Google Scholar 

  16. C. Ko, S. Ramanathan, J. Appl. Phys. 104, 086105 (2008)

    Article  Google Scholar 

  17. J.M. Bian, M.H. Wang, H.J. Sun et al., J. Mater. Sci. 51(13), 6149–6155 (2016)

    Article  Google Scholar 

  18. L.L. Fan, S. Chen, Y.F. Wu et al., Appl. Phys. Lett. 103, 131914 (2013)

    Article  Google Scholar 

  19. H.W. Liu, L.M. Wong, S.J. Wang et al., Appl. Phys. Lett. 103, 151908 (2013)

    Article  Google Scholar 

  20. L.L. Fan, Y.F. Wu, C. Si et al., Thin Solid Films 520, 6124–6129 (2012)

    Article  Google Scholar 

  21. Y.X. Guo, Y.F. Liu, C.W. Zou, et al., Appl. Phys. A 115, 1245–1250 (2014)

    Article  Google Scholar 

  22. H.J. Paik, J.A. Moyer et al., Appl. Phys. Lett. 107, 163101 (2015)

    Article  Google Scholar 

  23. K. Zhao, L. T. Teng, Y. F. Tang, et al., Ceram. Int. 40, 15335–15340 (2014)

    Article  Google Scholar 

  24. X.X. Xiao, S. Li, H. Wei et al., J. Mater. Sci. 26, 4226–4233 (2015).

    Google Scholar 

  25. Y. Zhou, S. Ramanathan, J. Appl. Phys. 112, 074114 (2012)

    Article  Google Scholar 

  26. A. Seeboth, R. Ruhmann, O. Mühling, Materials 3, 5143–5168 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61604029, and the Fundamental Research Funds for the Central Universities (DUT16LAB11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Bian.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhang, B., Bian, J. et al. Stability and heating rate dependent metal–insulator transition properties of VO2 film grown by MBE. J Mater Sci: Mater Electron 28, 16861–16866 (2017). https://doi.org/10.1007/s10854-017-7603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7603-1

Navigation