Skip to main content
Log in

Novel flexible coaxial nanoribbons arrays to help achieve tuned and enhanced simultaneous multicolor luminescence–electricity–magnetism trifunctionality

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible color-tunable coaxial nanoribbons array endowed with electricity and magnetism is obtained via coaxial electrospinning. Every single coaxial nanoribbon is composed of Fe3O4 nanoparticles (NPs)/polyaniline(PANI)/polymethylmethacrylate (PMMA) conductive-magnetic bifunctional core and [Eu(TTA)3(TPPO)2+Tb(TTA)3(TPPO)2]/PMMA [TTA = 2-Thenoyltrifluoroacetone radical, TPPO = tris(N,N-tetramethylene)phosphoric acid triamide] insulative-photoluminescent shell. In the coaxial nanoribbons array, the fluorescent color is adjustable in the range of green–yellow–red via modulating the mass ratios of RE(TTA)3(TPPO)2, (RE = Eu, Tb), PANI and Fe3O4 NPs, and changing excitation wavelength. The coaxial nanoribbons array possesses more excellent luminescent performance than the counterpart composite nanoribbons array. For the core of coaxial nanoribbons, the highest electrical conductivity reaches 3.152 × 10−2 S cm−1. Magnetism and electricity of the coaxial nanoribbons array can be tuned. Design philosophy and fabrication method provide a novel and facile strategy toward other nanomaterials with multifunctionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)

    Article  Google Scholar 

  2. S.J. Wang, J.B. Hu, Y.Y. Wang, F. Luo, J. Mater. Sci. 48, 805–811 (2013)

    Article  Google Scholar 

  3. X. Yang, Z. Li, E. Ju, J. Ren, X. Qu, Chem.-A Eur. J. 20, 394–398 (2014)

    Article  Google Scholar 

  4. H. Wang, Y. Li, L. Sun, Y. Li, W. Wang, S. Wang, S. Xu, Q. Yang, J. Colloid Interface Sci. 350, 396–401 (2010)

    Article  Google Scholar 

  5. D. Singh, S. Bhagwan, R.K. Saini, V. Tanwar, J. Mater. Sci. 27, 6464–6473 (2016)

    Google Scholar 

  6. D. Li, Q. Ma, X. Xi, X. Dong, W. Yu, J. Wang, G. Liu, Chem. Eng. J. 309, 230–239 (2017)

    Article  Google Scholar 

  7. H. Zhang, X. Shan, Z. Ma, L. Zhou, M. Zhang, P. Lin, S. Hu, E. Ma, R. Li, S. Du J. Mater. Chem. C 2, 1367–1371 (2014)

    Article  Google Scholar 

  8. G.K. Dalapati, S. Masudy-Panah, S.T. Chua, M. Sharma, T.I. Wong, H.R. Tan, D. Chi, Sci. Rep. 6, 20182 (2016)

    Article  Google Scholar 

  9. M. Shang, J. Fan, Y. Zhang, H. Lian, J. Lin, Inorg. Chem. Commun. 52, 73–76 (2015)

    Article  Google Scholar 

  10. Y.H. Ra, R. Wang, S.Y. Woo, M. Djavid, S.M. Sadaf, J. Lee, G.A. Botton, Z. Mi, Nano Lett. 16, 4608–4615 (2016)

    Article  Google Scholar 

  11. K. Narasimha, M. Jayakannan, Macromolecules 49, 4102–4114 (2016)

    Article  Google Scholar 

  12. H.Y. Ko, J. Lee, Y.S. Lee, H.-N. Gu, B.A. Ali, A.A. Al-Khedhairy, H. Heo, S. Cho, S. Kim, Chem. Commun. 51, 2159–2161 (2015)

    Article  Google Scholar 

  13. S.Y. Kim, K. Woo, K. Lim, K. Lee, H.S. Jang, Nanoscale 5, 9255–9263 (2013)

    Article  Google Scholar 

  14. F. Xie, J. Li, Z. Dong, D. Wen, J. Shi, J. Yan, M. Wu, RSC Adv. 5, 59830–59836 (2015)

    Article  Google Scholar 

  15. K. Lun, Q. Ma, M. Yang, X. Dong, Y. Yang, J. Wang, W. Yu, G. Liu, Chem. Eng. J. 279, 231–240 (2015)

    Article  Google Scholar 

  16. G.S.R. Raju, J.Y. Park, H.C. Jung, E. Pavitra, B.K. Moon, J.H. Jeong, J.H. Kim, J. Mater. Chem. 21, 6136–6139 (2011)

    Article  Google Scholar 

  17. R. Van Deun, D. Ndagsi, J. Liu, I. Van Driessche, K. Van Hecke, A.M. Kaczmarek, Dalton Trans. 44, 15022–15030 (2015)

    Article  Google Scholar 

  18. Y.S. Lin, S.H. Wu, Y. Hung, Y.H. Chou, C. Chang, M.L. Lin, C.P. Tsai, C.Y. Mou, Chem. Mater. 18, 5170–5172 (2006)

    Article  Google Scholar 

  19. P. Gomez-Romero, Adv. Mater. 13, 163–174 (2001)

    Article  Google Scholar 

  20. R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O’Horo, B.N. Ganguly, V. Mehrotra, M.W. Russell, D.R. Huffman, Science 257, 219–223 (1992)

    Article  Google Scholar 

  21. D. Gontero, M. Lessard-Viger, D. Brouard, A.G. Bracamonte, D. Boudreau, A.V. Veglia, Microchem. J. 130, 316–328 (2017)

    Article  Google Scholar 

  22. Q. Zhai, X. Zhang, J. Li, E. Wang, Nanoscale 8, 15303–15308 (2016)

    Article  Google Scholar 

  23. Z. Wang, Q. Ma, X. Dong, D. Li, X. Xi, W. Yu, J. Wang, G. Liu, ACS Appl. Mater. Interfaces 8, 26226–26234 (2016)

    Article  Google Scholar 

  24. Q. Ma, W. Yu, X. Dong, J. Wang, G. Liu, J. Xu, J. Nanopart. Res. 14, 1–7 (2012)

    Google Scholar 

  25. Q. Ma, W. Yu, X. Dong, J. Wang, G. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)

    Article  Google Scholar 

  26. S. Sheng, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu, G. Liu, Luminescence 30, 26–31 (2015)

    Article  Google Scholar 

  27. M. Yang, S. Sheng, Q. Ma, N. Lv, W. Yu, J. Wang, X. Dong, G. Liu, Mater. Res. 19, 308–313 (2016)

    Article  Google Scholar 

  28. S. Sheng, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu, G. Liu, J. Mater. Sci. 25, 1309–1316 (2014)

    Google Scholar 

  29. Y. Liu, Q. Ma, M. Yang, X. Dong, Y. Yang, J. Wang, W. Yu, G. Liu, Chem. Eng. J 284, 831–840 (2016)

    Article  Google Scholar 

  30. Y. Liu, Q. Ma, X. Dong, W. Yu, J. Wang, G. Liu, Phys. Chem. Chem. Phys. 17, 22977–22984 (2015)

    Article  Google Scholar 

  31. S. Sheng, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu, G. Liu, J. Mater. Sci. 25, 2279–2286 (2014)

    Google Scholar 

  32. D. Sallagoity, C. Elissalde, J. Majimel, M. Maglione, V.A. Antohe, F. Abreu Araujo, P.M. Pereira de Sa, S. Basov, L. Piraux, RSC Adv. 6, 106716–106722 (2016)

    Article  Google Scholar 

  33. Y. Zhang, X. He, L. Wang, J. Gao, J. Li, Materials 9, 1–7 (2016)

    Google Scholar 

  34. L. Jiang, S. Ying Hui, H.Y. Peng, L.-J. Li, T. Wu, J. Ma, F.Y. Chiang Boey, X. Chen, L.F. Chi, Small 7, 1949–1953 (2011)

    Article  Google Scholar 

  35. J.H. Zhou, J. Zeng, J. Grant, H.K. Wu, Y.N. Xia, Small 7, 3308–3316 (2011)

    Article  Google Scholar 

  36. H. Shao, Q. Ma, X. Dong, W. Yu, M. Yang, Y. Yang, J. Wang, G. Liu, Sci. Rep. 5, 14052 (2015)

    Article  Google Scholar 

  37. H. Shao, Q. Ma, X. Dong, W. Yu, M. Yang, Y. Yang, J. Wang, G. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)

    Article  Google Scholar 

  38. S. Meshkova, J. Fluoresc. 10, 333–337 (2000)

    Article  Google Scholar 

  39. B. Vazquez, S. Deb, W. Bonfield, J. Mater. Sci. 8, 455–460 (1997)

    Google Scholar 

  40. Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2010)

    Article  Google Scholar 

  41. S. Palaniappan, M. Sairam, J. Appl. Polym. Sci. 108, 825–832 (2008)

    Article  Google Scholar 

  42. Y. Xia, J.M. Wiesinger, A.G. MacDiarmid, A.J. Epstein, Chem. Mater. 7, 443–445 (1995)

    Article  Google Scholar 

  43. Q. Ma, W. Yu, X. Dong, J. Wang, G. Liu, Nanoscale 6, 2945–2952 (2014)

    Article  Google Scholar 

  44. M.O. Ansari, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, RSC Adv. 4, 23713–23719 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province of China (20170101101JC), the Open Project Program of Key Laboratory of Preparation and Application of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, China (No. 2017003), Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (2017C051), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th Five-Year Plan Period (JJKH20170608KJ), Youth Foundation of Changchun University of Science and Technology (No. XQNJJ-2016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Ma, Q., Yu, W. et al. Novel flexible coaxial nanoribbons arrays to help achieve tuned and enhanced simultaneous multicolor luminescence–electricity–magnetism trifunctionality. J Mater Sci: Mater Electron 28, 16762–16775 (2017). https://doi.org/10.1007/s10854-017-7591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7591-1

Navigation