Skip to main content
Log in

Aloe vera (L.) Burm.f. extract reduced graphene oxide for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An eco-friendly and effective reducing agent to convert Graphene Oxide (GO) to reduced Graphene Oxide (rGO) is reported. The oxygen scavenging property of Aloe vera (L.) Burm.f. (AV) extract is successfully utilized to remove oxygen functionalities on GO. The synthesized reduced Graphene oxide (ARGO) is analyzed using UV–Visible spectroscopy, Raman spectroscopy and FT-IR analysis. Complete GO reduction is achieved within 3 h with 30 mM AV extract and is confirmed by the XRD results. The high resolution transmission electron microscopy images provide clear evidence for the formation of single layer of graphene (rGO). The mechanism of reduction of GO by the AV extract is proposed. The rGO shows good charge storage properties with stable cycling up to 1000 cycles, demonstrated by the electrochemical method. The findings suggest that the Aloe vera (L.) Burm.f. (AV) extract reduced graphene oxide was found to be suitable for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S. Dubonos et al. Science 306, 666 (2004)

    Article  Google Scholar 

  3. D. Hou, Q. Liu, H. Cheng, H. Zhang, S. Wang, J. Solid State Chem. 246, 351–356 (2017)

    Article  Google Scholar 

  4. J. Wang, E.C. Salihi, L. Šiller, Mat. Sci. Eng. C 72 1–6 (2017)

    Article  Google Scholar 

  5. M.T.H. Aunkor, I.M. Mahbubul, R. Saidurb, H.S.C. Metselaar, RSC Adv. 6, 27807 (2016)

    Article  Google Scholar 

  6. R.M. Zaid, F.C. Chong, E.Y. Teo, E.P. Ng, K.F. Chong, Arab. J. Chem. 8, 560–569 (2015)

    Article  Google Scholar 

  7. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    Article  Google Scholar 

  8. M. Liang, L. Zhi, J. Mat. Chem. 19, 5871 (2009)

    Article  Google Scholar 

  9. M.Y. Han, B. Oezyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  10. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 10, 1555 (2008)

    Article  Google Scholar 

  11. Q. Liu, .Z Liu, X. Zhong, L. Yang, N. Zhang, G. Pan, S. Yin et al. Adv. Funct. Mater. 19, 894 (2009)

    Article  Google Scholar 

  12. Y. Liu, X. Dong, P. Chen, Chem. Soc. Rev. 41, 2283 (2012)

    Article  Google Scholar 

  13. S.Y. Toh, K.S. Loh, S.K. Kamarudin, W.R.W. Daud, Chem. Eng. J. 251, 422–434 (2014)

    Article  Google Scholar 

  14. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Carbon 49(9), 3019–3023 (2011)

    Article  Google Scholar 

  15. Y. Liu, Y. Li, Y. Yang, Y. Wen, M. Wang, J. Nano Sci. Nanotech. 11(11), 10082–10086 (2011)

    Article  Google Scholar 

  16. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung et al. Adv. Funct. Mater. 19(12), 1987–1992 (2009)

    Article  Google Scholar 

  17. E.C. Salas, Z. Sun, A. Lüttge, J.M. Tour, ACS Nano. 4(8), 4852–4856 (2010)

    Article  Google Scholar 

  18. C. Everett, E.C. Salas, Z. Sun, A. Lüttge, M.T. James, ACS Nano 4(8), 4852–4856 (2010)

    Article  Google Scholar 

  19. S. Park, R.S. Ruoff, Nature Nanotech. 4, 217–224 (2009)

    Article  Google Scholar 

  20. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Nanotechnology 22, 055705 (2010)

    Article  Google Scholar 

  21. M. Acik, J.Y. Chabal, Mater. Sci. Res. 2(1), 101 (2013)

    Google Scholar 

  22. Y. Si, T. Samulski, Nano Lett. 8(6), 1679–1682 (2008)

    Article  Google Scholar 

  23. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, N. Liu, Langmuir 25(20), 12030–12033 (2009)

    Article  Google Scholar 

  24. S. Naqvi, M.F. Ullah, M.S. Hadi, Indian J. Biochem. Biophys. 47, 161–165 (2010)

    Google Scholar 

  25. K.R. Anilkumar, K.R. Sudarshankrishna, G. Chandramohan, N. Ilaiyaraja, F. Khanum, A.S. Bawa, Indian J. Exp. Biol. 48, 837–842 (2010)

    Google Scholar 

  26. A. López, M.S. de Tangil, O. Vega-Orellana, A.S. Ramírez, M. Rico, Molecules 18, 4942–4954 (2013)

    Article  Google Scholar 

  27. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  28. C. Chen, L. Jing, L. Run, G. Xiao, D. Yan, New J. Chem. 37, 2778–2783 (2013)

    Article  Google Scholar 

  29. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)

    Article  Google Scholar 

  30. S. Stankovich, D.A. Dikin, R. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  31. G. Wang, F. Qian, C.W. Saltikov, Y. Jiao, Y. Li, Nano Res. 4(6), 563–570 (2011)

    Article  Google Scholar 

  32. C.S.R. Vusa, S. Berchmans, S. Alwarappan, RSC Adv. 4, 22470 (2014)

    Article  Google Scholar 

  33. W. Chun, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, P.K. Shen, K. Zhang, ACS Appl. Mater. Interfaces 7, 26512–26521 (2015)

    Article  Google Scholar 

  34. T. Fan, W. Zeng, Q. Niu, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, A.J. Epstein, Nanoscale Res. Lett. 10, 192 (2015)

    Article  Google Scholar 

  35. J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A. Suthanthiraraj, E. Elaiyappillai, P. Merlin, J. Electroanal. Chem. 797, 78–88 (2017)

    Article  Google Scholar 

  36. G.K. Veerasubramani, K. Krishnamoorthy, S. Radhakrishnan, N.-J. Kim, S.J. Kim, J. Int. Hyd. Energy 39, 5186–5193 (2014)

    Article  Google Scholar 

  37. Y. Zhu, J. Xiaobo, R. Yin, H. Zhongliang, X. Qiu, Z. Wu, Y. Liu, RSC Adv. 7, 111235 (2017)

    Google Scholar 

  38. B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu, W. Chen, Nano Energy 2(6), 1071–1078 (2013)

    Article  Google Scholar 

  39. L. Yuan, B. Yao, Bin Hu, K. Huo, W. Chen, J. Zhou, Energy Environ. Sci. 6, 470–476 (2013)

    Article  Google Scholar 

  40. B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu, Y. Cheng, X. Xiao, B. Wang, Y. Li, J. Zhou, Adv. Mater. 28(30), 6353–6358 (2016)

    Article  Google Scholar 

  41. S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, Y.H. Gao, ACS Nano (2017). doi:10.1021/acsnano.6b08262

    Google Scholar 

  42. W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, L. Tian, Materials 9, 783 (2016)

    Article  Google Scholar 

  43. C. Xiang, L. Ming, M. Zhi, A. Manivannan, W. Nianqiang, J. Power Sour. 226, 65–70 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Management and Administration of Karunya University for their support and help. The authors are grateful to Department of Science and Technology, Govt. of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Vasanthkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Elanthamilan, E., Obadiah, A. et al. Aloe vera (L.) Burm.f. extract reduced graphene oxide for supercapacitor application. J Mater Sci: Mater Electron 28, 16648–16657 (2017). https://doi.org/10.1007/s10854-017-7576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7576-0

Navigation