Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 21, pp 16476–16483 | Cite as

Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach

  • H. A. Rahnamaye Aliabad
  • S. Basirat
  • Iftikhar Ahmad
Article

Abstract

The structural, electronic and thermoelectric properties of CdGa2S4 under pressure are studied by the modified Becke–Johnson (mBJ) approach and the Boltzmann transport theory. The calculated structural properties indicate that the optimized lattice constants decrease with increasing pressure. We found that the size of the band gap reached a maximum value and then it started to decrease with increasing pressure due to a band anticrossing at the Γ point. The results indicate that a high thermoelectric efficiency can be achieved if the size of band gap can be controlled under applying external pressure. For the n and p-type doping of CdGa2S4, the largest value of the anisotropic figure of merit is obtained for p-type doping. At 0.58 GPa, the best figure of merit of 1.04 is achieved along the z-direction at 800 K.

Notes

Acknowledgements

We thank Prof. Blaha of Vienna University of Technology, Austria and Prof. Madsen of Ruhr University in Bochum, Germany, for help in the use of Wien2k and BoltzTrap packages.

References

  1. 1.
    S. Bagci, B.G. Yalcin, H.A. Rahnamaye Aliabad, S. Dumana, B. Salmankurt, RSC Adv. 6, 59527–59540 (2016)CrossRefGoogle Scholar
  2. 2.
    H.A. Rahnamaye Aliabad, Z. Barzanuni, S. Ramezani Sani, Iftikhar Ahmad, S. Jalali-Asadabadi, H. Vaezi, M. Dastras, J. Alloys Compd. 690, 942–952 (2017)CrossRefGoogle Scholar
  3. 3.
    G. Yang, H. Cui, D. Ma, C. He, J. Appl. Phys. 116, 223707–223709 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Lu, S. Chen, W. Wu, Z. Du, Y. Chao, J. Cui, Sci. Rep. 7, 40224 (2017)CrossRefGoogle Scholar
  5. 5.
    L. Wu, Y. Sun, G.Z. Zhang, C.X. Gao, Mater. Lett. 129, 68 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Thonhauser, T. Scheidemantel, J. Sofo, J. Badding, G. Mahan, Phys. Rev. B 68, 085201 (2003)CrossRefGoogle Scholar
  7. 7.
    S.-H. Ma, Z.-Y. Jiao, X.-Z. Zhang, J. Mater. Sci. 47, 3849–3854 (2012)CrossRefGoogle Scholar
  8. 8.
    A.H. Reshak, S.A. Khan, Mater. Res. Bull. 48, 4555–4564 (2013)CrossRefGoogle Scholar
  9. 9.
    A.H. Reshak, S.A. Khan, J. Alloys Compd. 595, 125–130 (2014)CrossRefGoogle Scholar
  10. 10.
    I.G. Stamov, N.N. Syrbu, V.I. Parvan, V.V. Zalamai, I.M. Tiginyanu, Opt. Commun. 309, 205–211 (2013)CrossRefGoogle Scholar
  11. 11.
    O. Gomis, D. Santamar-Pérez, R. Vilaplana, R. Luna, J.A. Sans, F.J. Manjon, D. Errandonea, E. Pérez-Gonzalez, P. Rodrguez-Hernandez, A. Munoz, I.M. Tiginyanu, V.V. Ursaki, J. Alloys Compd. 583, 70–78 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Eifler, G. Krauss, V. Riede, V. Krämer, W. Grill, J. Phys. Chem. Solids 66, 2052–2057 (2005)CrossRefGoogle Scholar
  13. 13.
    D. Errandonea, R.S. Kumar, F.J. Manjon, V.V. Ursaki, I.M. Tiginyanu, J. Appl. Phys. 104, 063524 (2008)CrossRefGoogle Scholar
  14. 14.
    R.K. Bhandari, Y. Hashimoto, K. Ito, Jpn. J. Appl. Phys. 43, 6890 (2004)CrossRefGoogle Scholar
  15. 15.
    M.L. Liu, Y.M. Wang, F.Q. Huang, L.D. Chen, W.D. Wang, Scr. Mater. 57, 1133–1136 (2007)CrossRefGoogle Scholar
  16. 16.
    M.L. Liu, F.Q. Huang, L.D. Chen, Y.M. Wang, Y.H. Wang, G.F. Li, Q. Zhang, Appl. Phys. Lett. 90, 072109 (2007)CrossRefGoogle Scholar
  17. 17.
    M.L. Liu, F.Q. Huang, L.D. Chen, Scr. Mater. 58, 1002–1005 (2008)CrossRefGoogle Scholar
  18. 18.
    M.L. Liu, F.Q. Huang, L.D. Chen, I.W. Chen, Appl. Phys. Lett. 94, 202103 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. (Vienna University of Technology, Austria, 2001)Google Scholar
  20. 20.
    K. Georg, H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)CrossRefGoogle Scholar
  21. 21.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  22. 22.
    H.A. Rahnamaye Aliabad, Chin. Phys. B 24, 097102 (2015)CrossRefGoogle Scholar
  23. 23.
    H.A. Rahnamaye Aliabad, M. Kheirabadi, Phys. B 433, 157 (2014)CrossRefGoogle Scholar
  24. 24.
    H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, M.A. Saeed, Comput. Mater. Sci. 65, 509 (2012)CrossRefGoogle Scholar
  25. 25.
    I.V. Bodnar, V. Yu, V. Rud, Inorg. Mater. 40, 102–106 (2004)CrossRefGoogle Scholar
  26. 26.
    Z.M. Gibbs, A. LaLonde, G.J. Snyder, New J. Phys. 15, 075020 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Yang, H. Cui, D. Ma, C. He, J. Appl. Phys. 116, 223709 (2014)CrossRefGoogle Scholar
  28. 28.
    M.S. Lee, S.D. Mahanti, Phys. Rev. B 85, 165149 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Zevalkink, G.S. Pomrehn, S. Johnson, J. Swallow, Z.M. Gibbs, G.J. Snyder, Chem. Mater. 24, 2091–2098 (2012)CrossRefGoogle Scholar
  30. 30.
    A.N. Georgobiani, S.I. Radautsan, M. Tiginyanu, Sov. Phys. Semicond. 19, 121 (1985)Google Scholar
  31. 31.
    M.F. Cabrera, J. Phys. 13, 10117–10124 (2001)Google Scholar
  32. 32.
    F.J. Manjón, O. Gomis, P.R. Hernández, E.P. González, A. Muñoz, D. Errandonea, J.R. Fuertes, A. Segura, M.F. Cabrera, I.M. Tiginyanu, V.V. Ursaki, Phys. Rev. B 81, 195201 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Shan, W. Walukiewicz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • H. A. Rahnamaye Aliabad
    • 1
  • S. Basirat
    • 2
  • Iftikhar Ahmad
    • 3
    • 4
  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of PhysicsPayame Noor University of MashhadMashhadIran
  3. 3.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  4. 4.Abbottabad University of Science and TechnologyHavelianPakistan

Personalised recommendations