Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 21, pp 16329–16335 | Cite as

Identification and characterization of ß→α-Sn transition in SnCu1 bulk alloy inoculated with InSb

  • Agata Skwarek
  • Balázs IllésEmail author
  • Barbara Horváth
  • Attila Géczy
  • Piotr Zachariasz
  • David Bušek
Article
  • 96 Downloads

Abstract

In this paper, the allotropic transition of ß to α-Sn (so called “tin pest”) was identified with electrical resistance measurements. Samples were prepared from SnCu1 alloy using mechanical treatment of two different sample sizes, artificially inoculated with InSb and stored at −18°C for 9 weeks. The electrical resistance measurement showed that in the case of SnCu1 solder alloy the α-Sn transition has three stages: nucleation, growth and the saturation phase, when the transition is almost stopped. It was proven by focused ion beam cross-sectioning and Mösbauer spectroscopy that the developed α-Sn phase can enclose the metastable non-transitioned ß-Sn preventing its further transition and resulting the saturation phase of the phenomenon. In addition, the results point out that the rate of vertical expansion of the α-Sn into the sample body can be equivalent or higher than the horizontal expansion.

Notes

Acknowledgements

The research leading to these results has received funding from the ProProgressio foundation.

References

  1. 1.
    P.-C. Wang, C.-P. Chang, M.-J. Youh, Y.-M. Liu, C.-M. Chu, M.-D. Ger, The preparation of pH-sensitive Pd catalyst ink for selective electroless deposition of copper on a flexible PET substrate. J. Taiwan Inst. Chem. Eng. 60, 555–563 (2016)CrossRefGoogle Scholar
  2. 2.
    A. M. Molodets, S. S. Nabatov, Thermodynamic potentials, diagram of state, and phase transitions of tin on shock compression. High Temp. 38(5), 715–721 (2000)CrossRefGoogle Scholar
  3. 3.
    W. Plumbridge, Recent observations on tin pest formation in solder alloys. J. Electron. Mater. 37(2), 218–223 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Gialanella, F. Deflorian, F. Girardi, I. Lonardelli, S. Rossi, Kinetics and microstructural aspects of the allotropic transition in tin. J. Alloys Compd. 474, 134–139 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Skwarek, P. Zachariasz, J. Kulawik, K. Witek, Inoculator dependent induced growth of α-Sn. Mater. Chem. Phys. 166, 16–19 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Skwarek, M. Sroda, M. Pluska, A. Czerwinski, J. Ratajczak, K. Witek, Occurrence of tin pest on the surface of tin-rich lead-free alloys. Solder. Surf. Mt. Tech. 23(3), 184–190 (2011)CrossRefGoogle Scholar
  7. 7.
    B. Illés, B. Horváth, Whiskering behaviour of immersion tin surface coating. Microelectron. Reliab. 53, 755–760 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Di Maio, C. Hunt, On the absence of the ß to α Sn allotropic transformation in solder joints made from paste and metal powder. Microelectron. Eng. 88, 117–120 (2011)CrossRefGoogle Scholar
  9. 9.
    O. Semenova, H. Flandorfer, H. Ipser, On the non-occurrence of tin pest in tin–silver–indium solders. Scripta Mater. 52, 89–92 (2005)CrossRefGoogle Scholar
  10. 10.
    W. Peng, An investigation of Sn pest in pure Sn and Sn-based solders. Microelectron. Reliab. 49, 86–91 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Giuranno, S. Delsante, G. Borzone, R. Novakovic, Effects of Sb addition on the properties of Sn–Ag–Cu/(Cu, Ni) solder systems. J. Alloys Compd. 689, 918–930 (2016)CrossRefGoogle Scholar
  12. 12.
    W.J. Plumbridge, Tin pest issues in lead-free electronic solders. J. Mater. Sci. 18, 307–318 (2007)Google Scholar
  13. 13.
    M. Leodolter-Dworak, I. Stefan, W.J. Plumbridge, H. Ipser, Tin pest in Sn-0.5Cu lead-free solder alloys: a chemical analysis of trace elements. J. Electron. Mater. 39(1), 105–108 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Skwarek, J. Kulawik, K. Witek, Method of evaluating the susceptibility of tin alloys to tin pest, 2013 polish patent application number: P404330, Patent number: 221478, 14 June 2013Google Scholar
  15. 15.
    K. Zhang, Y. Wang, W. Jin, X. Fang, Y. Wan, Y. Zhang, L. Dai, High-quality InSb nanocrystals: synthesis and application in graphene-based near-infrared photodetectors. RSC Adv. 6(30), 25123–25127 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Ito, A. Kadoda, K. Nakayama, Y. Yasui, M. Mori, K. Maezawa, T. Mizutani, Effective mobility enhancement in Al2O3/InSb/Si quantum well metal oxide semiconductor field effect transistors for thin InSb channel layers. Jpn. J. App. Phys. 52(4S), 04CF01 (2013)CrossRefGoogle Scholar
  17. 17.
    A.Y. Shenouda, M.M. Rashad, L. Chow, Synthesis, characterization and performance of Cd 1–xInxTe compound for solar cell applications. J. Alloys Compd. 563, 39–43 (2013)CrossRefGoogle Scholar
  18. 18.
    S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, J.H. Kim, A review on pulsed laser deposited CZTS thin films for solar cell applications. J. Alloys Compd. 619, 109–121 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Di Maio, C.P. Hunt, Monitoring the growth of the a phase in tin alloys by electrical resistance measurements. J. Electron. Mater. 38(9), 1874–1880 (2009)CrossRefGoogle Scholar
  20. 20.
    A.A. Matvienko, A.A. Sidelnikov, The influence of relaxation of stresses occurring during the ß→α transformation of tin on the kinetics of the transformation. J. Alloys Compd. 252, 172–178 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Skwarek, P. Zachariasz, J. Zukrowski, B. Synkiewicz, K. Witek, Early stage detection of ß to α a transition in Sn by Mössbauer spectroscopy, Mater. Chem. Phys. 182, 10–14 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Agata Skwarek
    • 1
  • Balázs Illés
    • 2
    • 4
    Email author
  • Barbara Horváth
    • 3
  • Attila Géczy
    • 2
    • 4
  • Piotr Zachariasz
    • 1
  • David Bušek
    • 4
  1. 1.Department of MicroelectronicsInstitute of Electron TechnologyKrakowPoland
  2. 2.Department of Electronics TechnologyBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Paul Scherrer InstituteVilligenSwitzerland
  4. 4.Department of ElectrotechnologyCzech Technical University in PraguePragueCzech Republic

Personalised recommendations