Skip to main content
Log in

Influence of temperature on microstructure, structural and ferroelectricity evolution properties with nano and micrometer grain size in multiferroic HoMnO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of temperature on microstructural, structural and ferroelectric evolution properties of multiferroic holmium manganese oxide (HoMnO3) ceramics were investigated. HoMnO3 ceramics were synthesized using a mechanochemical reaction of Ho2O3 and Mn2O3 powders in a high energy ball milling machine. The powder were sintered from 600 to 1250 °C with 50 °C increments. The results shows the microstructural, structural and ferroelectric hysteresis loop were observed to be dependent on sintering temperatures. The XRD characterization suggests an improvement of crystallinity with increasing sintering temperature. The hexagonal HoMnO3 were observed at temperature ≥1200 °C with the grain size of around 1600 nm. SEM micrographs showed larger grain size as the sintering temperature increased. The SEM results revealed a transformation of crystal structure occurs from orthorhombic to hexagonal at larger grain size regime. Polarization P—electric field E ferroelectric properties were observed to be enhanced with the increase of grain size through sintering temperature. The ferroelectric behavior was observed to change with the change of microstructure along with the structure transformation from orthorhombic to hexagonal. A complete systematic studies of the micron-nanometer grain size on microstructure-properties evolution of HoMnO3 multiferrroic ceramics is higlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Pradhan, B.K. Roul, J. Phys. Chem. Solids 72, 1180 (2011)

    Article  Google Scholar 

  2. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Nature 430, 541 (2004)

    Article  Google Scholar 

  3. I.R. Idza, M. Hashim, N. Rodziah, I. Ismayadi, A.R. Norailiana, Influence of evolving microstructure on magnetic-hysteresis characteristics in polycrystalline nickel-zinc ferrite, Ni0.3Zn0.7Fe2O4. Mater. Res. Bull. 47, 1345–1352 (2012)

    Article  Google Scholar 

  4. I. Ismayadi, M. Hashim, A.M. Khamirul, R. Alias, The Effect of milling time on Ni0.5Zn0.5Fe2O4 compositional evolution and particle size distribution. Am. J. Appl. Sci. 6, 1548–1552 (2009)

    Article  Google Scholar 

  5. I. Ismayadi, M. Hashim, A.M. Khamirul, R. Alias, J. Hassan, Dependence of magnetic properties and microstructure of mechanically alloyed Ni0.5Zn0.5Fe2O4 on soaking time. J. Magn. Magn. Mater. 324, 2463–2470 (2012)

    Article  Google Scholar 

  6. I. Ismayadi, M. Hashim, A.M. Khamirul, R. Alias, J. Hassan, The transition from paramagnetic to ferromagnetic states as influenced by evolving microstructure of Ni0.5Zn0.5Fe2O4. J. Supercond. Novel Magn. 25, 71–77 (2012)

    Article  Google Scholar 

  7. N. Rodziah, M. Hashim, I.R. Idza, I. Ismayadi, A.N. Hapishah, M.A. Khamirul, Dependence of developing magnetic hysteresis characteristics on stages of evolving microstructure in polycrystalline yttrium iron garnet. Appl. Surf. Sci. 258, 2679–2685 (2012)

    Article  Google Scholar 

  8. R. Nazlan, M. Hashim, N.H. Abdullah, I.R. Ibrahim, I. Ismail, Influence of milling time on the crystallization, morphology and magnetic properties of polycrystalline yttrium iron garnet. Adv. Mater. Res. 501, 324–328 (2012)

    Article  Google Scholar 

  9. R. Nazlan, M. Hashim, I.R. Ibrahim, N.H. Abdullah, F.M. Idris, I. Ismail, W.N.W.A. Rahman, Influence of microstructural evolution on the magnetically group dominance in polycrystalline Y3Fe5O12 multi-samples. Mater. Sci. Forum 846, 366–374 (2016)

    Article  Google Scholar 

  10. R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, W.N.W. Ab Rahman, N.H. Abdullah, I. Ismail, S. Kanagesan, Z. Abbas, R.S. Azis, Influence of indium substitution and microstructure changes on the magnetic properties evolution of Y3Fe5–xInxO12 (x = 0.0–0.4). J. Mater. Sci. 26(6), 3596–3609 (2015)

  11. R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, I. Ismail, W.N.W. Ab Rahman, N.H. Abdullah, M.M.M. Zulkimi, M.S. Mustaffa, Indium-substitution and indium-less case effects on structural and magnetic properties of yttrium-iron garnet, J. Phys. Chem. Solids 85, 1–12 (2015)

    Article  Google Scholar 

  12. I.R. Ibrahim, M. Hashim, R. Nazlan, I. Ismail, S. Kanagesan, W.N.W. Ab Rahman, N.H. Abdullah, F.M. Idris, G. Bahmanrokh, A comparative study of different sintering routes effects on evolving microstructure and B–H magnetic hysteresis in mechanically-alloyed Ni–Zn ferrite, Ni0.3Zn0.7Fe2O4. J. Mater. Sci. 26(1), 59–65(2014)

    Google Scholar 

  13. M.A. Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulkimi, N. Abdullah, W.N.A. Rahman, M.S. Abdullah, M. Manap, Magnetic properties of mechanically alloyed cobalt-zinc ferrite nanoparticles. J. Supercond. Nov. Magn. 27(5), 1293–1298 (2014)

    Google Scholar 

  14. I.R. Ibrahim, M. Hashim, R. Nazlan, I. Ismail, W.N.W. Ab Rahman, N.H. Abdullah, F.M. Idris, M.S. Shafie, M.M.M. Zulkimi, Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4. J. Magn. Magn. Mater. 355, 265–275 (2014)

    Article  Google Scholar 

  15. S.B. Waje, M. Hashim, W.D. WanYusoff, Z. Abbas, 5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater 322, 686–691 (2010)

    Article  Google Scholar 

  16. M.S. Mustaffa, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, M.M.M. Zulkimi, Magnetic phase-transition dependence on nano-to-micron grain-size microstructural changes of mechanically alloyed and sintered Ni0.6Zn0.4Fe2O4. J. Supercond. Nov. Magn. 27, 1451–1462 (2014)

    Article  Google Scholar 

  17. T. Nakamura, J. Magn. Magn. Mater. 168, 285 (1997)

    Article  Google Scholar 

  18. A. Rafferty, T. Prescott, D. Brabazon, Ceram. Int. 34, 15 (2008)

    Article  Google Scholar 

  19. K. Sun, Z. Ian, S. Chen, Y. Sun, Z. Yu, Rare Met 25, 509 (2006)

    Article  Google Scholar 

  20. X. Wang, Y. Gui, Y. Wang, S. Hao, C. Liu, Rare Met 25, 526 (2006)

    Article  Google Scholar 

  21. P.P. Rout, S. Pradhan, S.K. Das, B.K. Roul, Room temperature ferroelectricity in multiferroic HoMnO3 ceramics. Phys. B 10, 1016 (2012)

    Google Scholar 

  22. E. Galstyan, B. Lorenz, K.S. Martirosyan, F. Yen, Y.Y. Sun, M.M. Gospodinov, C.W. Chu, Single crystals and polycrystals with nano- and micrometer particle size. J. Phys. Condens. Matter. 20, 32 (2008)

    Article  Google Scholar 

  23. W. Wang, B. Xu, P. Gao, W. Zhang, Y. Sun, Electrical and dielectric properties of HoMnO3 ceramics. Solid State Commun. 177, 7–9 (2014)

    Article  Google Scholar 

  24. P.J. van der Zaag, A. Noordermeer, M.T. Johnson, P.F. Bongers, Comment on ‘‘Size-dependent curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 68, 3112 (1992)

    Article  Google Scholar 

  25. Y. Aria, M. Chinnasamy, C.N. Greneche, J.C. Yajie, D.Y. Soack, C. Zhaohui, H. Kailin, C. Zhuhua, Z. Kate, C. Vittoria, V.G. Harris, Enhanced N´eel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20, 185704 (2009)

    Article  Google Scholar 

  26. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company Inc., Boston, 1978)

    Google Scholar 

  27. KMA. Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, xZnxFe2O4. J. Magn. Magn. Mater 312, 219 (2007)

    Article  Google Scholar 

  28. R.L. Coble, Sintering crystalline solids. I. intermediate and final state diffusion models. J. Appl. Phys. 32, 787–792 (1961)

    Article  Google Scholar 

  29. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method. Mater. Chem. Phys 111, 87–91 (2008)

    Article  Google Scholar 

  30. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.K. Kay, R.H. Doremus, Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027–2035 (1976)

    Article  Google Scholar 

  31. B.B. van Aken, A. Meelsma, T.T.M. Palstra,, Hexagonal YMnO3. Acta Crystallograp. Sect. C 57, 230–232 (2001)

    Article  Google Scholar 

  32. A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208(1–2), 13–19 (2000)

    Article  Google Scholar 

  33. M.A.N. Ismail, Evolution of morphology and multiferroic properties of polycrystalline erbium manganite (ErMnO3) synthesized via mechanical alloying. MSc thesis, University Putra Malaysia, Serdang, 2014

  34. J.R. Sahu, A. Ghosh, C.N.R. Rao, Multiferroic properties of ErMnO3. Mater. Res. Bull. 44, 2123–2126 (2009)

    Article  Google Scholar 

  35. L. Peng, W. Xiao-Lin, C. Zhen-Xiang, D. Yi, K. Hideo, Structural, dielectric, antiferromagnetic, and thermal properties of the frustrated hexagonal Ho1–xErxMnO3 manganites. Phys. Rev. B 83, 144404 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Universiti Putra Malaysia (UPM) for providing Research University Grant Scheme (RUGS) Vot. No. 556200 and also to Ministry of Higher Education (MOHE) for providing the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Hapishah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hapishah, A.N., Azis, R.S., Hashim, M. et al. Influence of temperature on microstructure, structural and ferroelectricity evolution properties with nano and micrometer grain size in multiferroic HoMnO3 ceramics. J Mater Sci: Mater Electron 28, 16053–16061 (2017). https://doi.org/10.1007/s10854-017-7505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7505-2

Navigation