Skip to main content
Log in

Core-shell-core heterostructural engineering of Y2O3:Eu3+/MCM-41/YVO4:Eu3+ for enhanced red emission and tunable, broadened-band response to excitation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the first time, a hierarchical phosphor Y2O3:Eu3+/MCM-41/YVO4:Eu3+, with a core–shell-core heterostructure, is presented in this study. Synergistically bridging the phosphors Y2O3:Eu3+ (as an inner core) and YVO4:Eu3+ (as an outer core) by amorphous SiO2, i.e., MCM-41 (with ordered mesoporous channels) leads to the generation of the core–shell-core heterostructure with enhanced red emission and tunable, broadened-band response to excitation. The novel structure of the core–shell-core hierarchical material is clarified through various characterization methods including X-ray diffraction analysis, transmission electron microscopy, selected-area electron diffraction and N2 adsorption–desorption measurements. Significantly, through temperature-dependent fluorescence investigation, it is found that our core–shell phosphor (Y2O3:Eu3+/MCM-41) exhibits impressive fluorescence stability against temperature variation (27–227 °C) due to the protective effect resulting from MCM-41. By contrast, lowered stability can be noted for the core–shell-core phosphor (Y2O3:Eu3+/MCM-41/YVO4:Eu3+), especially when the temperature is higher than 100 °C, owing to the outer core (YVO4:Eu3+ nanoparticles) that is directly exposed to heat. Such a kind of luminescent materials holds substantial promise for labeling the organisms that are vulnerable to short-wavelength UV light irradiation. Additionally, potential intelligent systems can be expected to be designed on the basis of the fluorescence mutation as triggered by the temperature of 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Hu, J.H. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, Synthesis and stabilization of metal nanocatalysts for reduction reactions: a review. J. Mater. Chem. A 3, 11157 (2015). doi:10.1039/c5ta00753d

    Article  Google Scholar 

  2. H. Yu, Q. Dong, Z. Jiao et al., Ion exchange synthesis of PAN/Ag3PO4core–shell nanofibers with enhanced photocatalytic properties. J. Mater. Chem. A 2, 1668 (2014). doi:10.1039/c3ta14447j

    Article  Google Scholar 

  3. J. Treu, M. Bormann, H. Schmeiduch et al., Enhanced luminescence properties of InAs–InAsP core–shell nanowires. Nano Lett. 13, 6070 (2013). doi:10.1021/nl403341x

    Article  Google Scholar 

  4. G.Z. Jia, W.K. Lou, F. Cheng et al., Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots. Nano Res. 8, 1443 (2015). doi:10.1007/s12274-014-0629-2

    Article  Google Scholar 

  5. Y. Zhao, Y. Zhang, H. Zhao et al., Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Res. 8, 2763 (2015). doi:10.1007/s12274-015-0783-1

    Article  Google Scholar 

  6. N. Zhang, B. Zhu, F. Peng et al., Synthesis of metal–organic-framework related core–shell heterostructures and their application to ion enrichment in aqueous conditions. Chem. Commun. 50, 7686 (2014). doi:10.1039/c4cc00900b

    Article  Google Scholar 

  7. X. Xia, J. Tu, Y. Zhang et al., High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6, 5531 (2012). doi:10.1021/nn301454q

    Article  Google Scholar 

  8. J. Wang, H. Huang, D. Zhang et al., Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Res. 8, 2548 (2015). doi:10.1007/s12274-015-0761-7

    Article  Google Scholar 

  9. H. Hu, J.H. Xin, H. Hu, X. Wang, Y. Kong, Metal-free graphene-based catalyst—Insight into the catalytic activity: a short review. Appl. Catal. A 492, 1 (2015). doi:10.1016/j.apcata.2014.11.041

    Article  Google Scholar 

  10. Y. Guo, L. Zhang, X. Liu et al., Synthesis of magnetic core–shell carbon dot@MFe2O4(M = Mn, Zn and Cu) hybrid materials and their catalytic properties. J. Mater. Chem. A 4, 4044 (2016). doi:10.1039/c5ta10708c

    Article  Google Scholar 

  11. Y. Zhang, Y. Guo, Q. Du et al., Oxygen vacancies induced self-assembling synthesis of V4+-BiVO4/rGO core-shell nanorods with enhanced water splitting efficiency and superior sewage purification capability. Appl. Catal. A 526, 105 (2016). doi:10.1016/j.apcata.2016.08.012

    Article  Google Scholar 

  12. X. Chen, D. Peng, Q. Ju, F. Wang, Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44, 1318 (2015). doi:10.1039/c4cs00151f

    Article  Google Scholar 

  13. H. Hu, J. Xin, H. Hu, X. Wang, X. Lu, Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran. Molecules 19, 7459 (2014). doi:10.3390/molecules19067459

    Article  Google Scholar 

  14. H. Hu, M. Chang, M. Zhang, X. Wang, D. Chen, A new insight into PAM/graphene-based adsorption of water-soluble aromatic pollutants. J. Mater. Sci. 52, 8650 (2017). doi:10.1007/s10853-017-1090-x

    Article  Google Scholar 

  15. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, Studies on the luminescence behavior of SrCaMgSi2O7:Eu3+ phosphor by solid state reaction method. J. Mater. Sci. 27, 1828 (2015). doi:10.1007/s10854-015-3961-8

    Google Scholar 

  16. R. Cao, T. Fu, Y. Cao, et al., Tunable emission, energy transfer, and charge compensation in the CaSb2O6:Eu3+, Bi3+ phosphor. J. Mater. Sci. 27, 3514 (2015). doi:10.1007/s10854-015-4186-6

    Google Scholar 

  17. H. Zhang, Z. Cheng, Y. Zhang, Z. Hu, J. Yu, N. Zou, Improved luminescence properties and thermal stability of SrSi2O2N2:Eu2+ phosphor with single phase via the formation of Eu3+ on surface structure. J. Mater. Sci 52, 7605 (2017). doi:10.1007/s10853-017-0992-y

    Article  Google Scholar 

  18. W. You, Z. Xiao, F. Lai et al., Synthesis and photoluminescence properties of Ba3Al2O6:Eu3+ red phosphor. J. Mater. Sci 51, 5403 (2016). doi:10.1007/s10853-016-9843-5

    Article  Google Scholar 

  19. H. He, R. Fu, F. Qian, X. Song, Luminescent properties of Li2CaSiO4:Eu2+ phosphor. J. Mater. Sci. 23, 599 (2011). doi:10.1007/s10854-011-0447-1

    Google Scholar 

  20. A. John Peter, I.B. Shameem Banu, J. Thirumalai, S.P. David, Enhanced luminescence in CaMoO4: Eu3+ red phosphor nanoparticles prepared by mechanochemically assisted solid state meta-thesis reaction method. J. Mater. Sci. 24, 4503 (2013). doi:10.1007/s10854-013-1433-6

    Google Scholar 

  21. M. Elsagh, M. Rajabi, E. Amini Characterization of SrAl2O4:Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route. J. Mater. Sci. 25, 1612 (2014). doi:10.1007/s10854-014-1773-x

    Google Scholar 

  22. I.P. Sahu, The role of europium and dysprosium in the bluish-green long lasting Sr2Al2SiO7:Eu2+, Dy3+ phosphor by solid state reaction method. J. Mater. Sci. 26, 7059 (2015). doi:10.1007/s10854-015-3327-2

    Google Scholar 

  23. Y. Zhang, H. Hu, M. Chang, et al., Non-uniform doping outperforms uniform doping for enhancing the photocatalytic efficiency of Au-doped TiO2 nanotubes in organic dye degradation. Ceram. Int. 43, 9053 (2017). doi:10.1016/j.ceramint.2017.04.050

    Article  Google Scholar 

  24. H. Hu, J.H. Xin, H. Hu, PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application. J. Mater. Chem. A 2, 11319 (2014). doi:10.1039/c4ta01620c

    Article  Google Scholar 

  25. L. Graziani, E. Quagliarini, M. D’Orazio, TiO2-treated different fired brick surfaces for biofouling prevention: Experimental and modelling results. Ceram. Int. 42, 4002 (2016). doi:10.1016/j.ceramint.2015.11.069

    Article  Google Scholar 

  26. A. Shirai, T. Watanabe, H. Matsuki, Inactivation of foodborne pathogenic and spoilage micro-organisms using ultraviolet-a light in combination with ferulic acid. Lett. Appl. Microbiol. 64, 96 (2017). doi:10.1111/lam.12701

    Article  Google Scholar 

  27. Y. Liang, K. Sun, P. Chui, S. Wang, X. Sun, Luminescence functionalization of magnetite/multiwalled carbon nanotubes by YVO4:Eu3+ phosphors. Solid State Sci. 15, 79. doi:10.1016/j.solidstatesciences.2012.09.009

  28. Y.N. Zhu, W.W. Fu, PF Zhang, GH Zheng, JJ Mu, LY Zhang (2016) Self-assembled 3D micro-architectures of Sr3V2O8:xSm3+ ‘hydrothermal’ synthesis and luminescent properties. J. Mater. Sci. 27, 12772. doi:10.1007/s10854-016-5409-1

    Google Scholar 

  29. Q. Zhang, M. Rong, H. Tan, et al., Luminescent properties of the white long afterglow phosphors: Sr3Al2O5Cl2: Eu2+, Dy3+. J. Mater. Sci. 27, 13093 (2016). doi:10.1007/s10854-016-5453-x

    Google Scholar 

  30. L.-q. Yao, G.-h. Chen, T. Yang, C.-l. Yuan, C.-r. Zhou, Energy transfer, optical and luminescent properties in Tm3+/Tb3+/Sm3+ tri-doped borate glasses. J. Mater. Sci. 28, 553 (2016). doi:10.1007/s10854-016-5558-2

    Google Scholar 

  31. C. Yang, H. Zhou, J. Xu, et al. (2016) A series of highly quantum efficiency PMMA luminescent films doped with Eu-complex as promising light-conversion molecular devices. J. Mater. Sci. 27, 11284. doi:10.1007/s10854-016-5251-5

    Google Scholar 

  32. Y. Xing, Y. Zhu, C. Chang, Y. Wang, Y. Wang, New synthetic method and the luminescent properties of green-emitting β-Sialon: Eu2+ phosphors. J. Mater. Sci. (2017). doi:10.1007/s10854-017-6689-9

    Google Scholar 

  33. D. Thapa, J. Huso, K. Miklos, et al., UV-luminescent MgZnO semiconductor alloys: nanostructure and optical properties. J. Mater. Sci. 28, 2511 (2016). doi:10.1007/s10854-016-5825-2

    Google Scholar 

  34. M.M. Haque, H.-I. Lee, K.N. Hui, Investigation of luminescent properties of red-emitting Ba(Gd,Eu)B9O16 phosphors and the effect of Ca and Sr on its luminescent properties. J. Mater. Sci. 26, 4754 (2015). doi:10.1007/s10854-015-3161-6

    Google Scholar 

  35. J.M. Carvalho, L.C.V. Rodrigues, M.C.F.C. Felinto, L.A.O. Nunes, J. Hölsä, H.F. Brito, Structure–property relationship of luminescent zirconia nanomaterials obtained by sol–gel method. J. Mater. Sci 50, 873 (2014). doi:10.1007/s10853-014-8648-7

    Article  Google Scholar 

  36. J. Cao, H. Niu, Z. Lu, P. Huo, Y. Yan, Green synthesis of highly luminescent ZnS:Mn2+ quantum dots. J. Mater. Sci. 27, 6175 (2016). doi:10.1007/s10854-016-4545-y

    Google Scholar 

  37. H. Hu, C.C.K. Allan, J. Li et al., Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 7, 418 (2014). doi:10.1007/s12274-014-0408-0

    Article  Google Scholar 

  38. H.-W. Hu, J.H. Xin, H. Hu (2013) Highly efficient graphene-based ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 78, 1483. doi:10.1002/cplu.201300124

    Article  Google Scholar 

  39. H. Hu, M. Chang, X. Wang, D. Chen, Cotton fabric-based facile solar photocatalytic purification of simulated real dye wastes. J. Mater. Sci. 52, 9922 (2017). doi:10.1007/s10853-017-1107-5

    Article  Google Scholar 

  40. E. Dündar-Tekkaya, Y. Yürüm, Mesoporous MCM-41 material for hydrogen storage: a short review. Int. J. Hydrog. Energy 41, 9789 (2016). doi:10.1016/j.ijhydene.2016.03.050

    Article  Google Scholar 

  41. S. Loganathan, M. Tikmani, A.K. Ghoshal, Novel pore-expanded MCM-41 for CO2 capture: synthesis and characterization. Langmuir 29, 3491 (2013). doi:10.1021/la400109j

    Article  Google Scholar 

  42. M Mandal, V Nagaraju, B Sarma, GV Karunakar, KK Bania (2015) Enantioselective epoxidation of styrene by manganese chiral schiff base complexes immobilized on MCM-41. ChemPlusChem 80, 749. doi:10.1002/cplu.201402446

    Article  Google Scholar 

  43. D.J. Jovanović, Ž. Antić, R.M. Krsmanović et al., Annealing effects on the microstructure and photoluminescence of Eu3+-doped GdVO4 powders. Opt. Mater. 35, 1797 (2013). doi:10.1016/j.optmat.2013.03.012

    Article  Google Scholar 

  44. Y. Jia, W. Lü, N. Guo, W. Lü, Q. Zhao, H. You, Utilizing Tb3+ as an energy transfer bridge to connect Eu2+–Sm3+ luminescent centers: realization of efficient Sm3+ red emission under near-UV excitation. Chem. Commun. 49, 2664 (2013). doi:10.1039/c3cc39277e

    Article  Google Scholar 

  45. X. He, Y. Zhou, H. Liang, Cun+-assisted synthesis of multi- and single-hase yttrium oxide nanosheets. J. Mater. Chem. C 1, 6829 (2013). doi:10.1039/c3tc31321b

    Article  Google Scholar 

  46. Y. Chi, Q. Yuan, Y. Li, et al., Magnetically separable Fe3O4@SiO2@TiO2–Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 262, 404 (2013). doi:10.1016/j.jhazmat.2013.08.077

    Article  Google Scholar 

  47. H. Hu, J.H. Xin, H. Hu, A. Chan, L. He, Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr. Polym. 91, 305 (2013). doi:10.1016/j.carbpol.2012.08.038

    Article  Google Scholar 

  48. D. Wawrzynczyk, M. Nyk, M. Samoc, Multiphoton absorption in europium(iii) doped YVO4 nanoparticles. J. Mater. Chem. C 1, 5837 (2013). doi:10.1039/c3tc31308e

    Article  Google Scholar 

  49. Z. Jian, S. Huang, Y. Cao, Y. Zhang, Hydrothermal preparation and characterization of TiO2/BiVO4 composite catalyst and its photolysis of water to produce hydrogen. Photochem. Photobiol. 92, 363 (2016). doi:10.1111/php.12575

    Article  Google Scholar 

  50. P. Yang, Z. Quan, L. Lu, S. Huang, J. Lin, H. Fu, MCM-41 functionalized with YVO4:Eu3+: a novel drug delivery system. Nanotechnology 18, 235703 (2007). doi:10.1088/0957-4484/18/23/235703

    Article  Google Scholar 

  51. X. Xu, J. Wu, W. Xu et al., High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catal. Today (2016). doi:10.1016/j.cattod.2016.03.036

    Google Scholar 

  52. V.Y. Gusev, X. Feng, Z. Bu, G.L. Haller, J.A. O’Brien, Mechanical stability of pure silica mesoporous MCM-41 by nitrogen adsorption and small-angle X-ray diffraction measurements. J. Phys. Chem. 100, 1985 (1996)

    Article  Google Scholar 

  53. Y.-C. Chen, S.-C. Huang, Y.-K. Wang, Y.-T. Liu, T.-K. Wu, T.-M. Chen, Ligand-functionalization of BPEI-coated YVO4:Bi3+,Eu3+ nanophosphors for tumor-cell-targeted imaging applications. Chem. Asian J. 8, 2652 (2013). doi:10.1002/asia.201300570

    Article  Google Scholar 

  54. J. Wang, M. Hojamberdiev, Y. Xu (2012) CTAB-assisted hydrothermal synthesis of YVO4:Eu3+ powders in a wide pH range. Solid State Sci. 14, 191. doi:10.1016/j.solidstatesciences.2011.10.019

    Article  Google Scholar 

  55. Y. Du, Z. Hua, W. Huang et al., Mesostructured amorphous manganese oxides: facile synthesis and highly durable elimination of low-concentration NO at room temperature in air. Chem. Commun. 51, 5887 (2015). doi:10.1039/c5cc00269a

    Article  Google Scholar 

  56. H. Hu, X. Wang, D. Miao et al., A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol. Chem. Commun. 51, 16699 (2015). doi:10.1039/c5cc05826k

    Article  Google Scholar 

  57. Y. Jiang, J.R. Smith, G.R. Odette (2009) Formation of Y–Ti–O nanoclusters in nanostructured ferritic alloys: a first-principles study. Phys. Rev. B. doi:10.1103/PhysRevB.79.064103

    Google Scholar 

  58. G. Liu, L. Fu, Z. Gao et al., Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3, YAG and LaAlO3 phosphors. RSC Adv. 5, 51820 (2015). doi:10.1039/c5ra05986k

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the Construction Project from Guangdong Engineering Technique Research Center (506302679076), High-Level Talent Start-Up Research Project of Foshan University (Gg040918), Start-Up Research Project of Foshan University (gg040948), Universities of Guangdong Province (2016GCZX008), the Project Funded by Engineering Technology Center of Foshan City (2014GA000355), and the Key Platform Financing Programs from the Education Department of Guangdong Province (gg041002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huawen Hu or Dongchu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, M., Hu, H., Zhang, Y. et al. Core-shell-core heterostructural engineering of Y2O3:Eu3+/MCM-41/YVO4:Eu3+ for enhanced red emission and tunable, broadened-band response to excitation. J Mater Sci: Mater Electron 28, 16026–16035 (2017). https://doi.org/10.1007/s10854-017-7502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7502-5

Navigation