Skip to main content
Log in

Removal of MgO and enhancement of critical current density in urea-doped MgB2 bulks by melting impregnation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bulk MgB2 samples with 2 wt% urea have been prepared by melting impregnation method at 800 °C. Based on the advantage of MgO dissolution from urea, the size of MgO particles was significantly reduced (~10 nm) by the melting impregnation method to realize more efficient pinning effect than conventional urea doping. As the content of such MgO pinning centers inevitably decreased to be less than 2.3 vol%, the critical current density of the melting impregnated sample was enhanced (5.0 × 103 A cm−2, 20 K and 3 T) over the entire field, in contrast with the un-doped sample. This is on the other hand attributed to the C substitution for B and nano-sized amorphous regions within the MgB2 grains, which brought extra pinning effects. Instead of dissolving the edge of the MgB2 grains, the dispersed urea by impregnation method mainly corroded the interior of the MgB2 grains to introduce such amorphous defects for excellent superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  Google Scholar 

  2. D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, P.C. Canfield, Phys. Rev. Lett. 86, 2420–2422 (2001)

    Article  Google Scholar 

  3. M.A. Susner, S.D. Bohnenstiehl, S.A. Dregia, M.D. Sumption, Y. Yang, J.J. Donovan, E.W. Collings, Appl. Phys. Lett. 104, 162603 (2014)

    Article  Google Scholar 

  4. J.H. Kim, S. Oh, Y.-U. Heo, S. Hata, H. Kumakura, A. Matsumoto, M. Mitsuhara, S. Choi, Y. Shimada, M. Maeda, J.L. MacManus-Driscoll, S.X. Dou, NPG Asia Mater. 4, e3–e7 (2012)

    Article  Google Scholar 

  5. X. Xu, J.H. Kim, W.K. Yeoh, Y. Zhang, S.X. Dou, Supercond. Sci. Technol. 19, L47–L50 (2006)

    Article  Google Scholar 

  6. P. Kovac, I. Husek, T. Melisek, L. Kopera, M. Kulich, Supercond. Sci. Technol. 10, 10LT01 (2016)

    Article  Google Scholar 

  7. O. Erdem, E. Yanmaz, J. Mater. Sci. 27, 6502–6510 (2016)

    Google Scholar 

  8. K. Berger, M.R. Koblischka, B. Douine, J. Noudem, P. Bernstein, T. Hauet, J. Leveque, IEEE Trans. Appl. Supercond. 26, 6801005 (2016)

    Google Scholar 

  9. J. Karpinski, N.D. Zhigadlo, S. Katrych, R. Puzniak, K. Rogacki, R. Gonnelli, Phys. C 456, 3–13 (2007)

    Article  Google Scholar 

  10. S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, M. Tomsic, Appl. Phys. Lett. 81, 3419–3421 (2002)

    Article  Google Scholar 

  11. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii, K. Kishio, Supercond. Sci. Technol. 18, 1323–1328 (2005)

    Article  Google Scholar 

  12. H. Fujii, K. Ozawa, H. Kitaguchi, Supercond. Sci. Technol. 27, 035002 (2014)

    Article  Google Scholar 

  13. F. Qin, Q. Cai, H. Chen, J. Alloy. Compd. 633, 201–206 (2015)

    Article  Google Scholar 

  14. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermochim. Acta 424 (2004) 131–142.

    Article  Google Scholar 

  15. S.H. Zhou, A.V. Pan, D. Wexler, S.X. Dou, Adv. Mater. 19, 1373–1376 (2007)

    Article  Google Scholar 

  16. Q. Cai, Y. Liu, Z. Ma, L. Yu, Scr. Mater. 67, 92–95 (2012)

    Article  Google Scholar 

  17. C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)

    Article  Google Scholar 

  18. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  19. M. Avdeev, J.D. Jorgensen, R.A. Ribeiro, S.L. Budko, P.C. Canfield, Phys. C 387, 301–306 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51402213) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Cai, Q., Liu, Y. et al. Removal of MgO and enhancement of critical current density in urea-doped MgB2 bulks by melting impregnation method. J Mater Sci: Mater Electron 28, 15625–15629 (2017). https://doi.org/10.1007/s10854-017-7450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7450-0

Navigation