Skip to main content
Log in

Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiO nanoparticles were synthesized via a simple sonochemical method using NiCl2 as a precursor. Ternary sodium zinc borate glasses doped with the synthesized nano-sized NiO or commercial readymade NiO have been prepared by the conventional melt and annealing method. The spectroscopic behavior of the prepared NiO—doped glasses has been evaluated applying, absorption in UV–Visible region, semiconducting investigation, photoluminescence activity and building structural units by FTIR. X-ray diffraction indicated the amorphous nature of the prepared glasses. UV–Visible absorption spectrum reveals visible absorption bands of Ni2+ at 425 and 815 nm. A sharp intensive emission peak centered at about 652–668 nm was observed. The optical parameters indicated that the nano-sized NiO doped glass could be used in semiconducting applications. Infrared absorption measurements indicated that both triangular and tetrahedral borate (BO3, BO4) are the main building structural units of the prepared glasses and the addition of NiO causes no variations in the number or position of infrared absorption bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.M. Dooley, S.Y. Chen, J.R. Ross, J. Catal. 145, 402 (1994)

    Article  Google Scholar 

  2. E.L. Miller, R.E. Rocheleau, J. Electrochem. Soc. 144, 3072 (1997)

    Article  Google Scholar 

  3. H.X. Yang, Q.F. Dong, X.H. Hu, J. Power Sour. 79, 256 (1999)

    Article  Google Scholar 

  4. I. Hotový, J. Huran, L. Spiess, R. Čapkovic, Š. Haščıḱ, Vacuum 58, 300 (2000)

    Article  Google Scholar 

  5. F. Li, H.Y. Chen, C.M. Wang, K.S. Hu, J. Electroanal. Chem. 531, 5360 (2002)

    Article  Google Scholar 

  6. K. Liang, X. Tang, W. Hu, J. Mater. Chem. 22, 11062 (2012)

    Article  Google Scholar 

  7. S. Uchida, Y. Yamamoto, Y. Fujishiro, A. Watanabe, O. Ito, T. Sato, J. Chem. Soc. Farady Trans. 93, 3229 (1997)

    Article  Google Scholar 

  8. T. Sato, Y. Yamamoto, Y. Fujishiro S. Uchida, J. Chem. Soc. Farady Trans. 92, 5089 (1996)

    Article  Google Scholar 

  9. Y. Bahari Molla Mahaleh, S.K. Sadrnezhaad, D. Hosseini, J. Nanomater. 1, 1 (2008)

    Article  Google Scholar 

  10. M. Ghosh, K. Biswas, A. Sundaresan, C.N.R. Rao, J. Mater. Chem. 16, 106 (2006)

    Article  Google Scholar 

  11. K. Annapoorani, C. Basavapoornima, N.S. Murthy, K. Marimuthu, J. Non-Cryst. Solids 447, 273–282 (2016)

    Article  Google Scholar 

  12. N.M. Bobkova, S.A. Khokko, Glass Ceram. 62 (5–6), 167 (2005)

    Article  Google Scholar 

  13. S. Mahamuda, K. Swapna, A.S. Rao, T. Sasikala, L.R. Moorthy, Physica B 428, 36 (2013)

    Article  Google Scholar 

  14. M.M. Ahmed, C.A. Hogarth, M.N. Khan, J. Mater. Sci. 19, 4041 (2001)

    Google Scholar 

  15. S.P. Singh, B. Karmakar, Bismuth oxide and bismuth oxide doped glasses for optical and photonic applications, in Bismuth: Characteristics, Production and Applications. Materials Science and Technologies, ed. by K. Prasad, S. Bhattacharya (Nova, Hauppauge, New York, 2012). (Chapter-9)

    Google Scholar 

  16. M.B. Cortie, X. Xu, M.J. Ford, Phys. Chem. Chem. Phys. 8, 3520–3527 (2006)

    Article  Google Scholar 

  17. C. Bréchignac, P. Houdy, M. Lahmani, Nanomaterials and Nanochemistry (Springer, Berlin, 2007)

  18. M. Mazloumi, S. Zanganeh, A. Kajbafvala, P. Ghariniyat, S. Taghavi, A. Lak, M. Mohajerani, S.K. Sadrnezhaad, Ultrason. Sonochem. 16, 11 (2009)

    Article  Google Scholar 

  19. H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Mater. Lett 61, 4559 (2007)

    Article  Google Scholar 

  20. B. Neppolian, Q. Wang, H. Jung, H. Choi, Ultrason. Sonochem. 15, 649 (2008)

    Article  Google Scholar 

  21. L.P. Jiang, S. Xu, J.M. Zhu, J.R. Zhang, J.J. Zhu, H.Y. Chen, Inorg. Chem. 43, 5877 (2004)

    Article  Google Scholar 

  22. K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature 353, 414 (1991)

    Article  Google Scholar 

  23. D. Malacara, Color Vision and Colorimetry; Theory and Applications, 2nd edn. (SPIE press, Bellingham, 2011)

    Google Scholar 

  24. R.J. Mortimer, T.S. Varley, Displays 32, 35–44 (2011)

    Article  Google Scholar 

  25. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon press, Oxford, 1979)

    Google Scholar 

  26. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  27. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736–1740 (1996)

    Article  Google Scholar 

  28. G. Fu, Zh.. Hu, L. Xie, X. Jin, Y. Xie, Y. Wang, Z. Zhang, Y. Yang, H. Wu, Int. J. Electrochem. Sci. 4, 1052 (2009)

    Google Scholar 

  29. M. El-Kemary, N. Nagy, I. El-Mehasseb, Mater. Sci. Semicond. Process. 16 (2013) 1747

    Article  Google Scholar 

  30. F.I. Dar, K.R. Moonooswamy, M.E. Souni, Nanoscale Res. Lett. 8, 363 (2013)

    Article  Google Scholar 

  31. A. Barakat, M. Al-Noaimi, M. Suleiman, A. S. Aldwayyan, B. Hammouti, T. Ben Hadda, S. F. Haddad, A. Boshaala, I. Warad, Int. J. Mol. Sci. 14, 23941 (2013)

    Article  Google Scholar 

  32. S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz, J. Appl. Phys 81, 556 (1997)

    Article  Google Scholar 

  33. M.T. Ramirez-Silvaa, M. Goemez-Hernaendeza, M. Pacheco-Hernaendez, A. Rojas-Hernaendeza, L. Galicia, Spectrochim. Acta A 60 (2004) 781

    Article  Google Scholar 

  34. S.G. Motke, S.P. Yawale, S.S. Yawale, Bull. Mater. Sci. 25(1) 75 (2002)

    Article  Google Scholar 

  35. A.C. Wright, S.A. Feller, A.C. Hannon, in Proceedings of 2nd International Conference on Borate Glasses, Crystals and Melts, Society of Glass Technology, Sheffield, 1997

  36. E.I. Kamitsos, Phys. Chem. Glasses, 44, 79 (2003)

    Google Scholar 

  37. J. Krogh-Moe, Phys. Chem. Glasses 6, 46 (1965)

    Google Scholar 

  38. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, J. Non-Cryst. Solids 126, 52 (1990)

    Article  Google Scholar 

  39. S. Mahamuda, K. Swapna, P. Packiyaraj, A. Srinivasa Rao, G. Vijaya Prakash, Opt. Mater. 36, 362–371 (2013)

    Article  Google Scholar 

  40. P. Gayathri Pavani, K. Sadhana, V. Chandra Mouli, Physica B 406, 1242 (2011)

    Article  Google Scholar 

  41. M.O. Bensaid, L. Ghalouci, S. Hiadsi, F. Lakhdari, N. Benharrats, G. Vergoten, Vib. Spectrosc 74, 20 (2014)

    Article  Google Scholar 

  42. M.A. Marzouk, Y.M. Hamdy, H.A. Elbatal, J. Non-Cryst. Solids 458, 1 (2017)

    Article  Google Scholar 

  43. D. Ehrt, H. Ebendorff-Heidepriem, H. Albrecht, T. Schröder, W. Triebel, Glastech. Ber. Glass Sci. Technol. 68(C1), 521 (1995)

    Google Scholar 

  44. D. Ehrt, P. Ebeling, U. Natura, J. Non-Cryst. Solids 263–264, 240 (2000)

    Article  Google Scholar 

  45. I. Ardelean, Mod. Phys. Lett. 16, 523 (2001)

    Article  Google Scholar 

  46. T.K. Kundu, D.K. Chakravorty, J. Mater. Res. 14, 1069 (1999)

    Article  Google Scholar 

  47. B. Wu, J. Qiu, M. Peng, C. Zhu, Mater. Res. Bull 42, 762 (2007)

    Article  Google Scholar 

  48. G. Lakshminarayana, S. Buddhudu, Spectrochim. Acta A 63, 295 (2006)

    Article  Google Scholar 

  49. M.A. Buñuel, J. García, M.G. Proietti, J.A. Solera, R. Cases, J. Chem. Phys. 110, 3566 (1999)

    Article  Google Scholar 

  50. P. Nageswara Rao, G. Naga Raju, D. Krishna Rao, N. Veeraiah, J. Lumin. 117, 53–60 (2006)

    Article  Google Scholar 

  51. C.R. Bamford, Colour generation and control in glass, in Glass Science & Technology, vol. 2, ed by D.R. Uhlman, N.J. Kreidl (Elsevier, Amsterdam, 1977)

    Google Scholar 

  52. T. Bates, Ligand field theory and absorption spectra of transition metal ions in glasses, in Modern Aspects of the Vitreous State, vol. 2, ed by J.D. Mackenzie (Butterworths, London, 1962), pp 195–254

    Google Scholar 

  53. G. Lakshminarayana, S. Buddhudu, Spectrochim. Acta A 63, 295–304 (2006)

    Article  Google Scholar 

  54. A. Thulasiramudu, S. Buddhudu, J. Quant. Spectrosc. Radiat. Transf. 102, 212–227 (2006)

    Article  Google Scholar 

  55. D.K. Mishra, X. Qi, J. Alloys Compd. 504, 27–31 (2010)

    Article  Google Scholar 

  56. M.A. Marzouk, S.M. Abo-Naf, H.A. Zayed, N.S. Hassan, J. Mater. Res. Technol. 5(3) (2016) 226–233.

    Article  Google Scholar 

  57. R. Jose, T. Suzuki, Y. Ohishi, J. Non-Cryst. Solids 352, 5564 (2006)

    Article  Google Scholar 

  58. B. Sumalatha, I. Omkaram, T.R. Rao, C.L. Raju, J. Mol. Struct. 1006, 96 (2011)

    Article  Google Scholar 

  59. M. Marzouk, H. ElBatal, W. Eisa, Indian J. Phys. 90, 781 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Centre through the Grant Number 11090313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Farag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, H.K., Marzouk, M.A. Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses. J Mater Sci: Mater Electron 28, 15480–15487 (2017). https://doi.org/10.1007/s10854-017-7435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7435-z

Navigation