Skip to main content
Log in

In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conductive ink can be widely applied in printed electronics to print high conductivity and flexible electrodes, especially for large-area formats with low cost considerations. In this article, we demonstrated that the in situ prepared silver nanoparticles decorated graphene conductive ink was suitable for flexible electronics. By using liquid phase exfolication method and reducing the silver salt to nano silver at the same system which addressed the heterogeneous issue of silver decorated graphene. The inkjet-printed graphene features attained low resistivity of 20 ± 1Ω/□ after a thermal anneal at 400 °C for 30 min while showed uniform morphology, compatibility with flexible substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Sangoi, C.G. Smith, M.D. Seymour, J.N. Venkataraman, D.M. Clark, M.L. Kleper, B.E.J. Kahn, Printing radio frequency identification (RFID) tag antennas using inks containing silver dispersions. Dispers. Sci. Technol. 25, 513–521(2004)

    Article  Google Scholar 

  2. M. Allen, C.W. Lee, B.J. Ahn, T. Kololuoma, K.H. Shin, S.L. Ko, R2R gravure and inkjet printed RF resonant tag. Microelectron. Eng. 88, 3293–3299 (2011)

    Article  Google Scholar 

  3. L.L. Lavery, G.L. Whiting, A.C. Arias, All ink-jet printed polyfluorene photosensor for high illuminance detection. Org. Electron. 12, 682–685 (2011)

    Article  Google Scholar 

  4. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49, 2154–2157 (2010)

    Article  Google Scholar 

  5. C.N. Hoth, P. Schilinsky, S.A. Choulis, C.J. Brabec, Printing highly efficient organic solar cells. Nano Lett. 8, 2806–2813 (2008)

    Article  Google Scholar 

  6. C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, High photovoltaic performance of inkjet printed polymer:fullerene blends. Adv. Mater. 19, 3973–3978 (2007)

    Article  Google Scholar 

  7. J.C. Lin, J.Y. Chan, On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field. Mater. Chem. Phys. 43, 256–265(1996)

    Article  Google Scholar 

  8. D.Y. Deng, Y.R. Cheng, Y.X. Jin, T.K. Qi, F. Xiao, Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. J. Mater. Chem. 22, 23989–23995 (2012)

    Article  Google Scholar 

  9. C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 20, 3289–3293 (2008)

    Article  Google Scholar 

  10. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, et al., Injet printed graphene electronics. ACS Nano 6, 2992–3006 (2012)

    Article  Google Scholar 

  11. S.K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011)

    Article  Google Scholar 

  12. B.J. Kim, S.K. Lee, M.S. Kang, J.H. Ahn, J.H. Cho, Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6, 8646–8651 (2012)

    Article  Google Scholar 

  13. A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009)

    Article  Google Scholar 

  14. Y.T. Liang, M.C. Hersam, Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J. Am. Chem. Soc. 132, 17661–17663 (2010)

    Article  Google Scholar 

  15. J.T. Seo, A.A. Green, A.L. Antaris, M.C. Hersam, High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. J. Phys. Chem. Lett. 2, 1004–1008 (2011)

    Article  Google Scholar 

  16. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, et al., Ink-jet printed graphene electronics. ACS Nano 6, 2992–3006 (2012)

    Article  Google Scholar 

  17. L.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang, J.W. Suk, L.L. Zhang, E. Peng, S.H. Mousavi, A.B. Khanikaev, R. Piner, G. Shvets, R.S. Ruoff, Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012)

    Article  Google Scholar 

  18. K.K. Kim, A. Reina, Y. Shi, H. Park, L.J. Li, Y.H. Lee, J. Kong, Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21, 285205–285210 (2010)

    Article  Google Scholar 

  19. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803–026807 (2008)

    Article  Google Scholar 

  20. E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013)

    Article  Google Scholar 

  21. G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials:a review. Circuit World 38, 193–213 (2012)

    Article  Google Scholar 

  22. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing process and its applications. Adv. Mater. 22, 673–685 (2010)

    Article  Google Scholar 

  23. D. Gans, B.J. Schubert, Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789–7793 (2004)

    Article  Google Scholar 

  24. S. Jeong, D. Kim, J. Moon, Ink-jet-printed organic-inorganic hybrid dielectrics for organic thin-film transistors. J. Phys. Chem. C 112, 5245–5249 (2008)

    Article  Google Scholar 

  25. J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18, 229–234 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Hunan Provincial Science & Technology Department Major Project with Contract No. HCSN16003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunying Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Feng, S., Shi, M. et al. In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing. J Mater Sci: Mater Electron 28, 15411–15417 (2017). https://doi.org/10.1007/s10854-017-7427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7427-z

Navigation