Skip to main content
Log in

Synthesis and microwave absorption properties of sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge was successfully prepared through a simple solvent-thermal and ultrasonic method. The structure and morphology of the composite have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. This new structure can effectively prevent the agglomeration of GO and the combination of CNTs/Fe3O4 and RGO shows a strong reflection loss (RL) (−50 dB) at 8.7 GHz with absorber thickness of 2.5 mm. Moreover, compared with CNTs/Fe3O4/GO composite, it is found that the thermal treating process is beneficial to enhance the microwave absorption properties, which may be attributed to high conductivity of RGO. On this basis, the microwave absorbing mechanism is systematically discussed. All the data show that the CNTs/Fe3O4/RGO composite exhibits excellent microwave absorption properties with light density and is expected to have potential applications in microwave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, J. Mater. Chem. C 1, 765 (2013)

    Article  Google Scholar 

  2. L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zhang, Carbon 73, 185 (2014)

    Article  Google Scholar 

  3. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  Google Scholar 

  4. C. Liu, D. Yu, D. Kirk, Y. Xu, RSC Adv. 7, 595 (2017)

    Article  Google Scholar 

  5. D. Li, R.B. Kaner, Science 320, 1170 (2008)

    Article  Google Scholar 

  6. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    Article  Google Scholar 

  7. Y. Kang, Z. Jiang, T. Ma, Z. Chu, G. Li, ACS Appl. Mater. Interfaces 8, 32468 (2016)

    Article  Google Scholar 

  8. N. Zhang, Y. Huang, P. Liu, X. Ding, M. Zong, M. Wang, J. Alloys Compd. 692, 639 (2017)

    Article  Google Scholar 

  9. Y. Wang, Y. Du, R. Qiang, C. Tian, P. Xu, X. Han, Adv. Mater. Interfaces 3, 1500684 (2016)

    Article  Google Scholar 

  10. Y.-L. Ren, H.-Y. Wu, M.-M. Lu, Y.-J. Chen, C.-L. Zhu, P. Gao, M.-S. Cao, C.-Y. Li, Q.-Y. Ouyang, ACS Appl. Mater. Interfaces 4, 6436 (2012)

    Article  Google Scholar 

  11. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)

    Article  Google Scholar 

  12. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105 (2006)

    Article  Google Scholar 

  13. L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang, L. Liu, X. Ren, H. Yang, J. Mater. Chem. A 2, 14940 (2014)

    Article  Google Scholar 

  14. H. Zhang, M. Hong, P. Chen, A. Xie, Y. Shen, J. Alloys Compd. 665, 381–387 (2016)

    Article  Google Scholar 

  15. M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu, H.-L. Shi, D.-Q. Zhang, W.-Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces 7, 19408 (2015)

    Article  Google Scholar 

  16. G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Chem. Mater. 23, 1587 (2011)

    Article  Google Scholar 

  17. Y. Huang, Q. Qi, H. Pan, X. Lei, X. Liu, J. Mater. Sci. 27, 9577 (2016)

    Google Scholar 

  18. Z. Pu, K. Jia, X. Liu, J. Mater. Sci. 26, 8922 (2015)

    Google Scholar 

  19. M. Feng, Y. Huang, T. Cheng, X. Liu, Int. J. Hydrog. Energy 42, 8224 (2017)

    Article  Google Scholar 

  20. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, Appl. Surf. Sci. 257, 4524 (2011)

    Article  Google Scholar 

  21. S. Yan, L. Wang, T. Wang, L. Zhang, Y. Li, S. Dai, Appl. Phys. A 122, 235 (2016)

    Article  Google Scholar 

  22. M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo, J. Zheng, RSC Adv. 3, 23638 (2013)

    Article  Google Scholar 

  23. H.-L. Xu, H. Bi, R.-B. Yang, J. Appl. Phys. 111, 07A522 (2012)

    Article  Google Scholar 

  24. R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Adv. Mater. 16, 401 (2004)

    Article  Google Scholar 

  25. Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, J. Mater. Chem. C 1, 2875 (2013)

    Article  Google Scholar 

  26. M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W.A. Hines, J.I. Budnick, G.W. Taylor, Appl. Phys. Lett. 80, 4404 (2002)

    Article  Google Scholar 

  27. X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, C.G. Lee, Appl. Phys. Lett. 89, 053115 (2006)

    Article  Google Scholar 

  28. X. Jian, B. Wu, Y. Wei, S. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101 (2016)

    Article  Google Scholar 

  29. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces 6, 12997 (2014)

    Article  Google Scholar 

  30. G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Science 317, 219 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank for financial support of this work from the National Natural Science Foundation (No. 51373028) and University of Electronic Science and Technology of China (A03013023601011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Huang or Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Q., Huang, Y., Xu, M. et al. Synthesis and microwave absorption properties of sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge. J Mater Sci: Mater Electron 28, 15043–15049 (2017). https://doi.org/10.1007/s10854-017-7378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7378-4

Navigation