Skip to main content
Log in

Hydrothermal synthesis and gas sensing property of titanium dioxide regular nano-polyhedron with reactive (001) facets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a preparation of titanium dioxide regular nano-polyhedron with reactive (001) facets by simple yet efficient hydrothermal synthesis process. It has been found that the (001) surfaces are terminated with F atoms, and the F-terminated surfaces, which reduce the surface energy of anatase titanium dioxide, provide a stable condition for the existence of (001) facets. Ni doping, additionally, restrict the growth of particle, making the morphology of anatase titanium dioxide regular plus uniform. Besides, the as prepared titanium dioxide with high reactive (001) facets exhibit far better gas sensing performance over ethanol than those mainly having exposed (101) facets. Such a facile method and interpretation mechanisms could be applicable to many other nanomaterials for a wide range of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.S. Lin, W.C. Chou, S.Y. Lu, Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO2 anatase (101) surface. J. Phys. Chem. B 110, 23460–23466 (2006)

    Article  Google Scholar 

  2. Z.Q. Chen, W.K. Li, W.J. Zeng, Microwave hydrothermal synthesis of nanocrystalline rutile. J. Mater. Lett. 62, 4343–4344 (2008)

    Article  Google Scholar 

  3. W.B. Hu, L.P. Li, G.S. Li, High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. J. Cryst. Growth. Des. 9, 83676–83682 (2009)

    Google Scholar 

  4. W. Zeng, T.M. Liu, Z.C. Wang, Oxygen adsorption on anatase TiO2 (101) and (001) surfaces from first principles. J. Mater. Trans. 51(1), 171–175 (2010)

    Article  Google Scholar 

  5. N.Q. Wu, J. Wang, D.N. Tafen, Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 132, 6679–6685 (2010)

    Article  Google Scholar 

  6. W. Wang, B.H. Gu, L.Y. Liang, Synthesis of rutile (alpha-TiO2) nanocrystals with controlled size and shape by low-temperature hydrolysis: effects of solvent composition. J. Phys. Chem. B 108, 14789–14792 (2004)

    Article  Google Scholar 

  7. H.G. Yang, H.C. Zeng, Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492–3495 (2004)

    Article  Google Scholar 

  8. F. Shao, J. Sun, L. Gao, S.W. Yamg, Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells. J. Appl. Mater. Interfaces 3, 2148–2153 (2011)

    Article  Google Scholar 

  9. W. Zeng, T. Liu, Z.C. Wang, Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts. J. Mater. Chem. 22, 3544–3548 (2012)

    Article  Google Scholar 

  10. T. Li, M. He, W. Zeng, Polyhedral Cu2O crystal: Morphology evolution from meshed nanocube to solid and gas-sensing performance, J. Alloy. Compd. 712, 50–58 (2017).

    Article  Google Scholar 

  11. H.B. Yin, Y. Wada, T. Kitamura, T. Sumida, Y. Hasegawa, S. Yanagida, Novel synthesis of phase pure nanoparticulate anatase and rutile TiO2 using TiCl4 aqueous solution. J. Mater. Chem. 12, 378–383 (2002)

    Article  Google Scholar 

  12. Y. Li, T. White, S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles. J. Solid State Chem. 177, 1372–1381 (2004)

    Article  Google Scholar 

  13. M. Sugiyama, H. Okazaki, S. Koda, Size and shape transformation of TiO2 nanoparticles by irradiation of 308-nm laser beam. Jpn. J. Appl. Phys. 41, 4666–4674 (2002)

    Article  Google Scholar 

  14. A.S. Barnard, L.A. Curtiss, Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry, J. Nano. Lett. 5(7), 1261–1266 (2005)

    Article  Google Scholar 

  15. H.B. Zhang, R.L. Penn, R.J. Hamers, J.F. Banfield, Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J. Phys. Chem. B 103, 4656–4662 (1999)

    Article  Google Scholar 

  16. T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method: 1. Solution chemistry of Ti(OH)(n)((4–n)+) complexes. J. Colloid Interface Sci. 252, 339 (2002)

    Article  Google Scholar 

  17. T. Sugimoto, X. Zhou, Synthesis of uniform anatase TiO2 nanoparticles by the gel-sol method: 2. Adsorption of OH ions to Ti(OH)(4) gel and TiO2 particles. J. Colloid Interface Sci. 252, 347–353 (2002)

    Article  Google Scholar 

  18. X.Q. Gong, A. Selloni, Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J. Phys. Chem. B 109, 19560–19562 (2005)

    Article  Google Scholar 

  19. H. Berger, H. Tang, F. Levy, Growth and Raman spectroscopic characterization of TiO2 anatase single crystals. J. Cryst. Growth 130, 108–112 (1993)

    Article  Google Scholar 

  20. H. Zhu, J. Tao, X. Dong, Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. J. Phys. Chem. C 114, 2873–2879 (2010)

    Article  Google Scholar 

  21. N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu, Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanoconnposites with tunable photoreactivity. J. Phys. Chem. C 115, 9136–9145 (2011)

    Article  Google Scholar 

  22. U. Diebold, The surface science of titanium dioxide. J. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  Google Scholar 

  23. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. J. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  24. M.C. Thurnauei, T. Rajh, D.M. Tiede, Surface modification of TiO2: correlation between structure, charge separation and reduction properties. J. Acta. Chem. Scan. 51, 610–618 (1997)

    Article  Google Scholar 

  25. Y. Nakaoka, Y.J. Nosaka, ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder, J. Photochem. Photobiol. A. 110, 299–305 (1997).

    Article  Google Scholar 

  26. S.H. Szczepankiewicz, J.A. Moss, M.R. Hoffmann, Electron traps and the Stark effect on hydroxylated titania photocatalysts. J. Phys. Chem. B 106, 7654–7658 (2002)

    Article  Google Scholar 

  27. Z.V. Saponjic, N. Dimitrijevic, D. Tiede, A. Goshe, X. Zuo, L. Chen, A.S. Barnard, P. Zapol, L.A. Curtiss, T. Rajh, Shaping nanometer-scale architecture through surface chemistry. J. Adv. Mater. 17, 965–973 (2005)

    Article  Google Scholar 

  28. K.F. Zmbov, J.L. Margrave, Mass spectrometric studies at high temperatures Sublimation pressures for TiF3 (g) and the stabilities of TiF2 (g) and TiF (g). J. Phys. Chem. 71, 2893–2895 (1967)

    Article  Google Scholar 

  29. K.P. Huber, G. Herzberg, in Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecular 642. (Van Nostrand Reinhold, New York, 1979)

    Book  Google Scholar 

  30. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Lin, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets. J. Nat. 453, 638–641 (2008)

    Article  Google Scholar 

  31. L. Huang, T. M. Liu, H. J. Zhang, W. W. Guo, W. Zeng, Hydrothermal synthesis of different TiO2 nanostructures: structure, growth and gas sensor properties, J. Mater. Sci. 23, 2024–2029 (2012)

    Google Scholar 

  32. W. Zeng, T. M. Liu, Z. Wang, S. Tsukimoto, M. Saito, Y. Ikuhara, Selective detection of formaldehyde gas using a Cd-doped TiO2–SnO2 sensor, Sensors 9, 9029–9038 (2009)

    Article  Google Scholar 

  33. W. Zeng, T.M. Liu, Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Physica B 405, 1345–1348 (2010)

    Article  Google Scholar 

  34. N. Barsan, M. Hubner, U. Weimar, Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sens. Actuators B 157, 510–517 (2011)

    Article  Google Scholar 

  35. M. Hubner, R.G. Pavelko, N. Barsan, Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials. Sens. Actuators B 154, 264–269 (2011)

    Article  Google Scholar 

  36. C.X. Wang, L.W. Yin, L.Y. Zhang, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 26(15), 12841–12848 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by 10th Undergraduate Innovation Training Program of Chongqing University (201610611175) and Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2016jcyjA0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, B., Zeng, W. Hydrothermal synthesis and gas sensing property of titanium dioxide regular nano-polyhedron with reactive (001) facets. J Mater Sci: Mater Electron 28, 13821–13828 (2017). https://doi.org/10.1007/s10854-017-7228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7228-4

Navigation