Study of InSb thin films grown on different substrates by the pulsed electrodeposition technique

Article
  • 22 Downloads

Abstract

Stoichiometric InSb thin films were prepared, on four different substrates, using a pulsed electrodeposition technique. The electrochemical bath used for the growth of InSb thin films was made up of a mixture of aqueous solutions of indium trichloride (InCl3), antimony trichloride (SbCl3), citric acid (C6H8O7·H2O) and sodium citrate (Na3C6H5O7·2H2O). Energy dispersive analysis of X rays along with X-ray diffraction (XRD) studies show that the elemental composition and crystalinity of thin films is strongly dependent on the ionic composition of the electrochemical bath. Stoichiometric InSb thin films can be grown on all the four substrates from the same bath, by properly selecting the composition of the bath. XRD  studies show that the InSb thin films grown on all the four substrates have preferred orientation along the (111) plane. The presence of sharp Raman peaks of longitudinal optical phonon mode and transverse optical phonon mode in stoichiometric thin films confirm that they are of good crystalinity.

References

  1. 1.
    R.K. Mangal, Y. Vijay, Bull. Mater. Sci. 30, 117 (2007).CrossRefGoogle Scholar
  2. 2.
    S. Singh, K. Lal, A.K. Shrivastava, K.N. Sood, R. Kishore, Indian J. Eng. Mater. Sci. 14, 55 (2007)Google Scholar
  3. 3.
    J.T. Wimmers, R.M. Davis, C.A. Niblack, D.S. Smith, Proc. SPIE 930, 125–138 (1988)CrossRefGoogle Scholar
  4. 4.
    D.L. Rode, Phys. Rev. B 3, 3287 (1971)CrossRefGoogle Scholar
  5. 5.
    N.K. Udayashankar, H.L. Bhat, Bull. Mater. Sci. 24, 445 (2001)CrossRefGoogle Scholar
  6. 6.
    J. Heremans, D.L. Partin, C.M. Thrush, Semi Sci. Technol. 8, 424 (1993)CrossRefGoogle Scholar
  7. 7.
    T. Ashley, A.B. Dean, C.T. Elliott, G.J. Pryce, A.D. Johnson, H. Willis, Appl. Phys. Lett. 66, 481 (1995)CrossRefGoogle Scholar
  8. 8.
    M. Edirisooriya, T.D. Mishima, C.K. Gaspe, K. Bottoms, R.J. Hauenstein, M.B. Santos, J. Cryst. Growth 311, 1972–1975 (2009)CrossRefGoogle Scholar
  9. 9.
    H.D. Parka, S.M. Prokesa, M.E. Twigga, Y. Dingb, Z.L. Wangb, J. Cryst. Growth 304, 399–401 (2007)CrossRefGoogle Scholar
  10. 10.
    K. Togawa, H. Sanbonsugi, A. Sandhu, M. Abe, H. Narimatsu, K. Nishio, H. Handa, Jpn. J. Appl. Phys. 44, 46–49 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Okamoto, T. Yoshida, S. Muramatsu, I. Shibasaki, J. Cryst. Growth 201, 765 (1999)CrossRefGoogle Scholar
  12. 12.
    M.K. Carpenter, M.W. Verbrugge, J. Mater. Res. 9, 2584 (1984)CrossRefGoogle Scholar
  13. 13.
    I. Kimukin, N. Biyikli, E. Ozbay, J. Appl. Phys. 94, 8 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, J. Chi, K. Banerjee, D. Grutzmacher, T. Schapers, J.G. Lu, J. Mater. Chem. 21, 2459–2462 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Miyazaki, S. Adachi, Appl. Phys. 70, 1672 (1991)CrossRefGoogle Scholar
  16. 16.
    D.G. Avery, D.W. Goodwin, A.E. Rennie, J. Sci. Instrum. 34 (1958)Google Scholar
  17. 17.
    C.K. Sumesh, K.D. Patel, G.K. Solanki, V.M. Pathak, R. Srivastava, Eur. Phys. J. Appl. Phys. 54, 10303 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Miyazaaki, M. Kunugi, Y. Kitamure, S. Adachi, Thin Solid Films 287, 51–56 (1996)CrossRefGoogle Scholar
  19. 19.
    M. Tomisu, N. Inoue, Y. Yasuoka, Vacuum 47, 239–242 (1996)CrossRefGoogle Scholar
  20. 20.
    K.R. Reddy, V.G. Gomes and M. Hassan, Mat. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  21. 21.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, J. Appl. Polym. Sci. 106, 1181–1191 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Phuruangrat, S. Thongtemb, T. Thongtem, Mater. Des. 107, 250–256 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Raghava, K. Nakata, T. Ochiai, T. Murakami, D. Tryk, J. Nanosci. Nanotechnol. 11, 3692–3695 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chenc, V.G. Gomes, Nanoscale 6, 11988–11994 (2014)CrossRefGoogle Scholar
  25. 25.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, Colloid. Surf. A 320, 49–56 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Cakici, R.R. Kakarla, F.A. Marroqui, Chem. Eng. J. 309, 151–158 (2017)CrossRefGoogle Scholar
  27. 27.
    A.M. Showkat, Y.P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.P. Lee, Bull. Korean Chem. Soc. 28, 1985 (2007)CrossRefGoogle Scholar
  28. 28.
    K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, Scr. Mater. 58, 1010–1013 (2008)CrossRefGoogle Scholar
  29. 29.
    K.R. Reddy, B.C. Sina, K.S. Ryua, J.C. Kimb, H. Chungc, Y. Leea, Synth. Met. 159, 595–603 (2009)CrossRefGoogle Scholar
  30. 30.
    K.R. Reddy, K.V. Karthik, S.B.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169–174 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Ortega, H. Herrero, J. Electrochem. Soc. 136, 3388 (1989)CrossRefGoogle Scholar
  32. 32.
    J. Machesney, J. Haigh, I.M. Dharmadasa, D.J. Mowthorpe, Opt. Mater. 6, 63 (1996)CrossRefGoogle Scholar
  33. 33.
    V.M. Kozlov, V. Agrigento, D. Bontempi, S. Canegallo, C. Manitou, A. Toussimi, J. Alloys Comp. 259, 234 (1997)CrossRefGoogle Scholar
  34. 34.
    T. Fulop, C. Bekele, U. Landau, J. Angus, K. Kash, Thin Solid Films 449, 1–5 (2004)CrossRefGoogle Scholar
  35. 35.
    M.I. Khan, X. Wang, X. Jing, K.N. Bozhilov, C.S. Ozkan. J. Nanosci. Nanotechnol. 8, 1–6 (2008)CrossRefGoogle Scholar
  36. 36.
    K.E. Hnida, L. Akinsinde, J. Gooth, K. Nielsch, R.P. Socha, A. Łaszcz, A. Czerwinski, G.D. Sulka, Nanotechnology 26, 285701 (2015)CrossRefGoogle Scholar
  37. 37.
    S.R. Das, C. Akatay, A. Mohammad, M.R. Khan, K. Maeda, R.S. Deacon, K. Ishibashi, Y.P. Chen, T.D. Sands, M.A. Alam, D.B. Janes, J. App. Phys. 116, 083506 (2014)CrossRefGoogle Scholar
  38. 38.
    K.E. Hnida, J. Mech, K. Szaciłowski, R.P. Socha, M. Gajewska, K. Nielsch, M. Przybylski, G.D. Sulkag, J. Mater. Chem. C 4, 1345 (2016)CrossRefGoogle Scholar
  39. 39.
    Y.T. Hsieh, Y.C. Chen, I.W. Sun, Chem. Electro. Chem. 3, 638–643 (2016).Google Scholar
  40. 40.
    S.O. Pagotto, M. Ballester, Surf. Coat. Technol. 122, 10–13 (1999)CrossRefGoogle Scholar
  41. 41.
    M.S. Chandrasekhar, M. Pushpavanam, Electrochim. Acta 53, 3313–3322 (2008)CrossRefGoogle Scholar
  42. 42.
    D. Grujicic, B. Pesic, Electrochim. Acta 47, 2901–2912 (2002)CrossRefGoogle Scholar
  43. 43.
    L. Zhou, Y. Dai, H. Zhang, Y. Jia, J. Zhang, C. Li, Bull. Korean Chem. Soc. 33, 1541 (2012)CrossRefGoogle Scholar
  44. 44.
    S.K.J. Al-Ani, Y.N. Obaid, S.J. Kasim, M.A. Mahdi, Int. J. Nanoelectron. Mater. 2, 99–109 (2009)Google Scholar
  45. 45.
    Y. Yang, L. Li, X. Huang, G. Li, L. Zhang, J. Mater. Sci. 42, 2753–2757 (2007)CrossRefGoogle Scholar
  46. 46.
    B. Williamson, R.C. Smallman, Philos. Mag. 1, 34 (1956)CrossRefGoogle Scholar
  47. 47.
    A. Salem, S.S. Ahmed, S.N. Alamri, Indian J. Pure Appl. Phys. 53, 696–700 (2015)Google Scholar
  48. 48.
    M.A. Islam, K.S. Rahman, F. Haque, M. Akhtaruzzaman, M.M. Alam, Z.A. Alothman, K. Sopian, N. Amin, Chalcogenide Lett. 11, 233–239 (2014)Google Scholar
  49. 49.
    V. Senthilkumar, S. Venkatachalam, C. Viswanathan, S. Gopal, S.K. Narayandass, D. Mangalaraj, K.C. Wilson, K.P. Vijayakumar, Cryst. Res. Technol. 40, 573–578 (2005)CrossRefGoogle Scholar
  50. 50.
    X. Zhang, Y. Hao, G. Meng, L. Zhang, J. Electrochem. Soc. 152, 664–668 (2005)CrossRefGoogle Scholar
  51. 51.
    K.R. Reddy, K.P. Lee, Y. Lee, A.I. Gopalan, Mater. Lett. 62, 1815–1818 (2008)CrossRefGoogle Scholar
  52. 52.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat, Y.C. Nho, Polym. Chem. 44, 3355–3364 (2006)CrossRefGoogle Scholar
  53. 53.
    H.X. Tan, X.C. Xu, RSC Adv. 5, 61383–61389 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Studies in PhysicsJiwaji UniversityGwaliorIndia

Personalised recommendations