Skip to main content
Log in

Sputtering pressure effects on microstructure and grain orientation distribution in FePt thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We use the magnetron sputtering method to fabricate FePt thin films on amorphous oxidized Si substrates by controlling the sputtering pressure and investigate the evolution of microstructure and grain orientation using X-ray diffraction and electron back-scatter diffraction, and discuss the effect of microstructure on magnetic properties of L10-FePt thin film. The experimental results show that the L10-FePt phase is formed when the sputtering pressure is 0.25 Pa, and the L10-FePt phase is not found when the sputtering pressure is higher. The higher sputtering pressure leads to poor crystallinity and smaller grain size in FePt thin films, which inhibit disorder–order phase transformation. Meanwhile, higher sputtering pressure results in a larger residual strain, because it increases the degree of local gain misorientation in FePt thin films. The inverse pole figure map and band contrast map reveal the grain growth orientation and microstructure of L10-FePt thin film from cross-sectional, indicating that the grain grows along different direction, and exists in the form of nanocolumnar crystal. The experimental results demonstrate that when there is no texture in L10-FePt thin film, the out-of-plane magneto anisotropy of L10-FePt thin film should be mainly contributed by the shape anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Li, Y. Zhu, Y. Zhang, H. Zhao, D. Zeng, Y. Li, W. Lu, Appl. Phys. Lett. 106, 082404 (2015)

    Article  Google Scholar 

  2. G. Giannopoulos, L. Reichel, A. Markou, I. Panagiotopoulos, V. Psycharis, C. Damm, S. Fähler, I. Khan, J. Hong, D. Niarchos, J. Appl. Phys. 117, 223909 (2015)

    Article  Google Scholar 

  3. K. Hasegawa, M. Mizuguchi, Y. Sakuraba, T. Kamada, T. Kojima, T. Kubota, S. Mizukami, T. Miyazaki, K. Takanashi, Appl. Phys. Lett. 106, 252405 (2015)

    Article  Google Scholar 

  4. B.S.D.C.S. Varaprasad, Y.K. Takahashi, K. Hono, JOM 65, 853 (2013)

    Article  Google Scholar 

  5. D. Weller, A. Moser, L. Folks, M.E. Best, IEEE Trans. Magn. 36, 10 (2000)

    Article  Google Scholar 

  6. O. Mosendz, S. Pisana, J.W. Reiner, B. Stipe, D. Weller, J. Appl. Phys. 111, 07B729 (2012)

    Article  Google Scholar 

  7. E.E. Fullerton, J. Pearson, C.H. Sowers, S.D. Bader, X.Z. Wu, S.K. Sinha, Phys. Rev. B 48, 17432 (1993)

    Article  Google Scholar 

  8. J.A. Thornton, J. Vac. Sci. Technol. A. 4, 3059 (1986)

    Article  Google Scholar 

  9. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)

    Article  Google Scholar 

  10. N.R. Álvarez, J.E. Gómez, A.E. Moya Riffo, M.A. Vicente Álvarez, A. Butera, J. Appl. Phys. 119, 083906 (2016)

    Article  Google Scholar 

  11. T. Speliotis, G. Varvaro, A.M. Testa, G. Giannopoulos, E. Agostinelli, W. Li, G. Hadjipanayis, D. Niarchos, Appl. Surf. Sci. 337, 118 (2015)

    Article  Google Scholar 

  12. V. Cantelli, J. Grenzer, J. von Borany, J. Fassbender, J. Appl. Phys. 105, 07B529 (2009)

    Article  Google Scholar 

  13. S.N. Hsiao, F.T. Yuan, H.W. Chang, H.W. Huang, S.K. Chen, H.Y. Lee, Appl. Phys. Lett. 94, 232505 (2009)

    Article  Google Scholar 

  14. H. Yuan, A. Chernyshov, J. Mardinly, K. Srinivasan, R. Acharya, G. Bertero, T. Yamashita, J. Appl. Phys. 109, 07B772 (2011)

    Article  Google Scholar 

  15. T. Suzuki, H. Muraoka, Y. Nakamura, K. Ouchi, IEEE Trans. Magn. 39, 691 (2003)

    Article  Google Scholar 

  16. T. Suzuki, K. Harada, N. Honda, K. Ouchi, J. Magn. Magn. Mater. 193, 85 (1999)

    Article  Google Scholar 

  17. M. Pierce, J. Davies, J. Turner, K. Chesnel, E. Fullerton, J. Nam, R. Hailstone, S. Kevan, J. Kortright, K. Liu, Phys. Rev. B 87, 184428 (2013)

    Article  Google Scholar 

  18. S. Mi, R. Liu, Y. Li, J. Ye, Y. Xie, Z. Chen, J. Magn. Magn. Mater. 403, 14 (2016)

    Article  Google Scholar 

  19. N.R. Álvarez, M.E.V. Montalbetti, J.E. Gómez, A.E.M. Riffo, M.A.V. Álvarez, E. Goovaerts, A. Butera, J. Phys. D 48, 405003 (2015)

    Article  Google Scholar 

  20. H.R. Moutinho, R.G. Dhere, M.J. Romero, C.S. Jiang, B. To, M.M. Al-Jassim, J. Vac. Sci. Technol. A 26, 1068 (2008)

    Article  Google Scholar 

  21. P. Pahlke, M. Sieger, P. Chekhonin, W. Skrotzki, IEEE Trans. Appl. Supercond. 26, 1 (2016)

    Google Scholar 

  22. A. Kumar, F. Law, G.K. Dalapati, G.S. Subramanian, P.I. Widenborg, H.R. Tan, A.G. Aberle, J. Vac. Sci. Technol. A 32, 061509 (2014)

    Article  Google Scholar 

  23. J. Ulaganathan, R.C. Newman, Mater. Charact. 92, 127 (2014)

    Article  Google Scholar 

  24. J.K. Mei, F.T. Yuan, W.M. Liao, A.C. Sun, Y.D. Yao, H.M. Lin, J.H. Hsu, H.Y. Lee, IEEE Trans. Magn. 47, 3633 (2011)

    Article  Google Scholar 

  25. S. Wicht, S.H. Wee, O. Hellwig, V. Mehta, S. Jain, D. Weller, B. Rellinghaus, J. Appl. Phys. 119, 115301 (2016)

    Article  Google Scholar 

  26. J.S. Kim, Y.M. Koo, B.J. Lee, S.R. Lee, J. Appl. Phys. 99, 053906 (2006)

    Article  Google Scholar 

  27. P.F. Carcia, A.D. Meinhaldt, A. Suna, Appl. Phys. Lett. 47, 178 (1985)

    Article  Google Scholar 

  28. J. Dubowik, Phys. Rev. B 54, 1088 (1996)

    Article  Google Scholar 

  29. Y. Lu, R.A. Altman, A. Marley, S.A. Rishton, P.L. Trouilloud, G. Xiao, W.J. Gallagher, S.S.P. Parkin, Appl. Phys. Lett. 70, 2610 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (No. 51171018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, L. Sputtering pressure effects on microstructure and grain orientation distribution in FePt thin films. J Mater Sci: Mater Electron 28, 13579–13586 (2017). https://doi.org/10.1007/s10854-017-7197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7197-7

Navigation