Skip to main content
Log in

Improved thermal and mechanical properties of aluminium oxide filled epoxy composites by reinforcing milled carbon fiber by partial replacement method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The demands for high performance electronic devices have been increasing recently. This continuous demand simultaneously put forward stringent requirements for effective thermal management solutions. In this study, improved thermal and mechanical properties of epoxy composites consisting of milled carbon fiber (MCF) and polyhedral aluminium oxide (Al2O3) fillers have been reported. By adding 14.5 wt% MCF and 60 wt% Al2O3 particles into epoxy, the maximum thermal conductivity reached were 3.3 and 7.9 times that of neat epoxy respectively. To further improve the composite thermal conductivity, a mixture of the two fillers was utilized. Milled carbon fiber with high aspect ratio enables it to act as heat conducting bridges among 3-D Al2O3 irregular particles; contributing considerably to the formation of a more efficient percolating network for heat flow. This resulted in an exceptionally high thermal conductivity with relatively lower filler content. A thermal conductivity of ten times that of neat epoxy was obtained with 42 wt% Al2O3 + 8 wt% MCF thus not only break the bottleneck of further improving the thermal conductivity of epoxy composite but also broaden the application of MCF in the field of thermal management solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Xu, K.S. Moon, C. Tison, C.P. Wong, IEEE Trans. Adv. Packag. 29, 295–305 (2006)

    Article  Google Scholar 

  2. H. Im, J. Kim, Carbon 49, 3503–3511 (2011)

    Article  Google Scholar 

  3. S. Sun, S. Chen, X. Luo, Y. Fub, L. Ye, J. Liu, Microelectron. Reliab. 56, 129–135 (2016)

    Article  Google Scholar 

  4. E.S. Lee, S.M. Lee, J. Am. Ceram. Soc. 91, 1169–1174 (2008)

    Article  Google Scholar 

  5. Y. Zhou, H. Wang, L. Wang, K. Yu, Z. Lin, Li He, Y. Bai, Mater. Sci. Eng. B 177, 892–896 (2012)

    Article  Google Scholar 

  6. A. Balakrishnan, M.C. Saha, Mater. Sci. Eng. A 528, 906–913 (2011)

    Article  Google Scholar 

  7. Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, Compos. Sci. Technol. 68, 1644–1648 (2008)

    Article  Google Scholar 

  8. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloys Compd. 652, 346–350 (2015)

    Article  Google Scholar 

  9. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  10. B. Arash, Q. Wang, V. K. Varadan, Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  11. A. Shah, Y. Wang, H. Huang, L. Zhang, F. Xue, Y. Duan, X. Don, Z. Zhang, Compos. Struct. 131, 1132–1141 (2015)

    Article  Google Scholar 

  12. H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443–451 (2015)

    Article  Google Scholar 

  13. H. Im, Y. Hwang, J.H. Moon, S.H. Lee, J. Kim, Compos. A 54, 159–165 (2013)

    Article  Google Scholar 

  14. A. Agrawal, A. Satapathy, Int. J. Therm. Sci. 89, 203–209 (2015)

    Article  Google Scholar 

  15. M.R. Zakaria, H.Md.. Akil, M.H.A. Kudus, S.S.Md. Saleh, Compos. A 66, 109–116 (2014)

    Article  Google Scholar 

  16. C.C. Teng, C.C.M. Maa, K.C. Chiou, T.M. Lee, Compos. B 43, 265–271 (2012)

    Article  Google Scholar 

  17. Y. Yao, X. Zeng, K. Guo, R. Sun, J.B. Xu, Compos. A 69, 49–55 (2015)

    Article  Google Scholar 

  18. J.H. Lee, K.Y. Rhee, S.J. Park, Compos. A 42, 478–482 (2011)

    Article  Google Scholar 

  19. S. Chandrasekaran, C. Seidel, K. Schulte, Eur. Polym. J. 49, 3878–3888 (2013)

    Article  Google Scholar 

  20. H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59, 41–85 (2016)

    Article  Google Scholar 

  21. T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, X. Wang, Exp. Polym. Lett. 7, 585–594 (2013)

    Article  Google Scholar 

  22. S.Y. Mun, H.M Lim, H. Ahn, D.J. Lee, Macromol. Res. 22, 613–617 (2014)

    Article  Google Scholar 

  23. H. Rahmani, S.H.M. Najafi, S.S. Matin, A. Ashori, Polym. Eng. Sci. 54, 2676–2682 (2014)

  24. Y. Shi, X. Feng, H. Wang, X. Lu, J. Mater. Sci. 42, 8465–8469 (2007)

    Article  Google Scholar 

  25. M.B. Kilfoil, R.A. Hesby, G.B. Pelleu, J. Prosthet. Dent. 50, 40–43 (1983)

    Article  Google Scholar 

  26. B.K. Daniels, N.K. Harakas, Nat. Phys. Sci. 231, 41–42 (1971)

    Article  Google Scholar 

  27. Ravikumar, M.S.S. Prasad, IJSRP 4, 1–7 (2014)

    Google Scholar 

  28. A. S.G. Kuzak, Shanmugam. J. Appl. Polym. Sci. 73, 649–658 (1999)

    Article  Google Scholar 

  29. K. Kim, J. Kim, Ceram. Intern. 40, 5181–5189 (2014)

    Article  Google Scholar 

  30. B.J. Ash, L.S. Schadler, R.W. Siegel, Mat. Lett. 55, 83–87 (2002)

    Article  Google Scholar 

  31. M. Xiong, G. Gu, B. You, L. Wu, J. Appl. Polym. Sci. 90, 1923–1931 (2003)

    Article  Google Scholar 

  32. Y. Sun, Z. Zhang, K.S. Moon, C.P. Wong, J. Polym. Sci. B 42, 3849–3858 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank USM for the PRGS (1001/PFIZIK/846074) funding, OSRAM Optosemiconductors (Malaysia) Sdn. Bhd. and OSRAM Optosemiconductors GmbH, Regensburg, Germany for characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anithambigai Permal.

Ethics declarations

Conflict of interest

All the co-authors have seen and agreed with the contents of the manuscript and there is no financial interest to report. We certify that the submission is the original work by us and is not under review in any other publication. We also would like to justify that we do not have any conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permal, A., Devarajan, M., Hung, H.L. et al. Improved thermal and mechanical properties of aluminium oxide filled epoxy composites by reinforcing milled carbon fiber by partial replacement method. J Mater Sci: Mater Electron 28, 13487–13495 (2017). https://doi.org/10.1007/s10854-017-7188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7188-8

Navigation