Skip to main content

Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption

Abstract

A three-dimensional (3D) nanocomposite of reduced graphene oxide (RGO) and zinc oxide (ZnO) was synthesized by a mild solution-process and a freeze-dried process effectively to keep the whole system fluffy. The BaFe12O19 nanocrystals were synthesized by nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of 3D-RGO-ZnO/BaFe12O19 nanocomposites were investigated and this new type 3D material exhibited an efficient reflection loss value and a wide absorption bandwidth. The minimum reflection loss arrives −43.45 dB at 11.52 GHz for 7 wt% of 3D-RGO-ZnO in the nanocomposite with a thickness of 2.0 mm, and the effective absorption bandwidth is larger than 5.8 GHz (the reflection loss below −10 dB). Therefore, the 3D-RGO-ZnO/BaFe12O19 nanocomposites can be considered as an excellent material candidate for microwave absorbers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo et al., RSC Adv. 3, 23638–23648 (2013)

    Article  Google Scholar 

  2. H. Zhang, M. Hong, P. Chen, A. Xie, Y. Shen, J. Alloy. Compd. 665, 381–387 (2016)

    Article  Google Scholar 

  3. C. Hou, T. Li, T. Zhao, W. Zhang, Y. Cheng, Mater. Des. 33, 413–418 (2012)

    Article  Google Scholar 

  4. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. 26, 4347–4379 (2015)

    Google Scholar 

  5. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner et al., Nat. Nanotechnol. 3, 327–331 (2008)

    Article  Google Scholar 

  6. L. Zhang, G. Chen, M.N. Hedhili, H. Zhang, P. Wang, Nanoscale 4, 7038–7045 (2012)

    Article  Google Scholar 

  7. M. Liu, J.P. Song, S.M. Shuang, C. Dong, J.D. Brennan, Y.F. Li, Acs Nano 8, 5564–5573 (2014)

    Article  Google Scholar 

  8. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326–1330 (2012)

    Article  Google Scholar 

  9. D. Wang, H. Gao, E. Roze, K. Qu, W. Liu, Y. Shao et al., J. Mater. Chem. C 1, 5772–5778 (2013)

    Article  Google Scholar 

  10. M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, J. Mater. Chem. C 3, 6589–6599 (2015)

    Article  Google Scholar 

  11. F. Wu, Y. Xia, Y. Wang, M. Wang, J. Mater. Chem. A 2, 20307–20315 (2014)

    Article  Google Scholar 

  12. B. Wen, M.S. Cao, M. Lu, W. Cao, H. Shi, J. Liu et al., Adv. Mater. 26, 3484–3489 (2014)

    Article  Google Scholar 

  13. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, M.S. Cao et al., ACS Appl. Mater. Interface 6, 7471–7478 (2014)

    Article  Google Scholar 

  14. J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, J. Mater. Chem. C 4, 7130–7140 (2016)

    Article  Google Scholar 

  15. M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou et al., Appl. Phys. Lett. 91, 203110 (2007)

    Article  Google Scholar 

  16. M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou et al., J. Mater. Chem. A 2, 10540–10547 (2014)

    Article  Google Scholar 

  17. K.K. Ji, Y. Li, M.S. Cao, J. Mater. Sci. 27, 5128–5135 (2016)

    Google Scholar 

  18. S. Biswas, G.P. Kar, S. Bose, Nanoscale 7, 11334–11351 (2015)

    Article  Google Scholar 

  19. H. He, F. Luo, N. Qian, N. Wang, J. Appl. Phys. 117, 085502 (2015)

    Article  Google Scholar 

  20. G. Li, L. Sheng, L. Yu, K. An, W. Ren, X. Zhao, Mater. Sci. Eng. 193, 153–159 (2015)

    Article  Google Scholar 

  21. M.C. Duan, L.M. Yu, L.M. Sheng, K. An, W. Ren, X.L. Zhao, J. Appl. Phys. 115, 174101 (2014)

    Article  Google Scholar 

  22. M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S.K. Dhawan, V. Choudhary, Phys. Chem. Chem. Phys. 17, 1610–1618 (2015)

    Article  Google Scholar 

  23. L. Yu, S. Cao, Y. Liu, J. Wang, C. Jing, J. Zhang, J. Magn. Magn. Mater. 301, 100–106 (2006)

    Article  Google Scholar 

  24. H. Zhang, D. Hines, D.L. Akins, Dalton Trans. 43, 2670–2675 (2014)

    Article  Google Scholar 

  25. V.A. Rane, S.S. Meena, S.P. Gokhale, S.M. Yusuf, G.J. Phatak, S.K. Date et al., J. Electron. Mater. 42, 761–768 (2013)

    Article  Google Scholar 

  26. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu et al., Appl. Phys. Lett. 98, 072906 (2011)

    Article  Google Scholar 

  27. V. Panwar, R.M. Mehra, Polym. Eng. Sci. 48, 2178–2187 (2008)

    Article  Google Scholar 

  28. B. Adohi, B. Haidar, L. Costa, V. Laur, C. Brosseau, Eur. Phys. J. B 88, 280 (2015)

    Article  Google Scholar 

  29. X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu et al., Appl. Phys. Lett. 89, 053115 (2006)

    Article  Google Scholar 

  30. J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. C 3, 4670–4677 (2015)

    Article  Google Scholar 

  31. J. Yoon, C.Y. You, Y. Jo, S.Y. Park, M.H. Jung, Appl. Phys. Exp. 4, 063006 (2011)

    Article  Google Scholar 

  32. M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W.A. Hines et al., Appl. Phys. Lett. 80, 4404 (2002)

    Article  Google Scholar 

  33. C. Brosseau, P. Talbot, J. Appl. Phys. 97, 104325 (2005)

    Article  Google Scholar 

  34. C. Brosseau, J.B. Youssef, P. Talbot, A.M. Konn, J. Appl. Phys. 93, 9243–9256 (2003)

    Article  Google Scholar 

  35. J.B. Youssef, C. Brosseau, Phys. Rev. B 74, 4070–4079 (2006)

    Article  Google Scholar 

  36. Y. Li, M. Cao, Mater. Des. 110, 99–104 (2016)

    Article  Google Scholar 

  37. B.J.P. Adohi, D. Bychanok, B. Haidar, C. Brosseau, Appl. Phys. Lett. 102, 072903 (2013)

    Article  Google Scholar 

  38. Y. Xu, L. Yuan, D. Zhang, J. Phys. D: Appl. Phys. 49, 155001 (2016)

    Article  Google Scholar 

  39. X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59, 326–355 (2014)

    Google Scholar 

  40. M. Fu, Q. Jiao, Y. Zhao, H. Li, J. Mater. Chem. A 2, 735–744 (2014)

    Article  Google Scholar 

  41. D. Chen, G.S. Wang, S. He, J. Liu, L. Guo, M.S. Cao, J. Mater. Chem. A 1, 5996–6003 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [Grant numbers 51202137, 61240054, 11274222 and 11544011].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leimei Sheng or Xinluo Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Sheng, L., Yang, J. et al. Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption. J Mater Sci: Mater Electron 28, 12900–12908 (2017). https://doi.org/10.1007/s10854-017-7120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7120-2

Keywords

  • Graphene Oxide
  • Reduce Graphene Oxide
  • Microwave Absorption
  • Reflection Loss
  • Magnetic Loss