Skip to main content

Advertisement

Log in

Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes: role of lattice energy of salts on electrical DC conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) based on polyvinyl alcohol (PVA) and sodium triflate (NaTf) have been prepared by solution cast technique. X-ray diffraction was performed for structural analysis. The decrease of intensity of crystalline peaks of PVA upon addition of NaTf salt reveals the increase of amorphous domain in SPEs. Impedance plots (Zi vs. Zr) shows that the electrolyte samples have a smaller bulk resistance. The highest achieved room temperature DC conductivity is 7.39 × 10−5 S/cm for the sample incorporated with 30 wt% of NaTf. The influence of lattice energy of sodium salts on DC conductivity is discussed. It was appeared that the lattice energy of salts significantly affects the conductivity behavior of polymer electrolytes. High DC conductivity can be achieved for polymer electrolytes incorporated with low lattice energy salts. The pattern of DC ionic conductivity against 1000/T is follows Arrhenius equation. The highest conducting composition has the lowest activation energy (0.109 eV). The DC conductivities calculated from the complex impedance plots are close to those obtained from the plateau region of AC conductivity spectra. Transport parameters such as density of mobile ions (Na+), mobility, and diffusion coefficient were determined for the samples using the Rice and Roth models. The dielectric analysis suggests non-Debye type of relaxation of ions in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Johnsi, S.A. Suthanthiraraj, Chin. J. Polym. Sci. 34, 332–343 (2016)

    Article  Google Scholar 

  2. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, B. Poojary, P.K. Pujari, T. Sheela, J. Naik, J. Elastom. Plast. 48, 442–455 (2016)

    Article  Google Scholar 

  3. N. Shukla, A.K. Thakur, A. Shukla, D.T. Marx, Int. J. Electrochem. Sci. 9, 7644–7659 (2014)

    Google Scholar 

  4. M. Muthuvinayagam, C. Gopinathan, Polymer 68, 122–130 (2015)

    Article  Google Scholar 

  5. O.Gh. Abdullah, J. Mater. Sci. 27, 12106–12111 (2016)

    Google Scholar 

  6. Y. M. Yusof, H. A. Illias, M. F. Z. Kadir, Ionics 20, 1235–1245 (2014)

    Article  Google Scholar 

  7. S. F. Bdewi, O. Gh. Abdullah, B.K. Aziz, A.A.R. Mutar, J. Inorg. Organomet. Polym. Mater. 26, 326–334 (2016)

    Article  Google Scholar 

  8. P. B. Bhargav, V. M. Mohan, A. K. Sharma, V. V. R. N. Rao, Ionics 13, 173–178 (2007)

    Article  Google Scholar 

  9. P. B. Bhargav, V. M. Mohan, A. K. Sharma, V. V. R. N. Rao, Ionics 13, 441–446 (2007)

    Article  Google Scholar 

  10. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Curr. Appl. Phys. 9, 165–171 (2009)

    Article  Google Scholar 

  11. E. Sheha, M.K. El-Mansy, J. Power Sources 185, 1509–1513 (2008)

    Article  Google Scholar 

  12. Ch. V. S. Reddy, A.-P. Jin, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Eur. Phys. J. E 19, 471–476 (2006)

    Article  Google Scholar 

  13. S.B. Aziz, Z.H.Z. Abidin, J. Soft Matter 2013, 8 (2013)

    Article  Google Scholar 

  14. O.Gh. Abdullah, S.A. Saleem, J. Electron. Mater. 45, 5910–5920 (2016)

    Article  Google Scholar 

  15. S. B. Aziz, J. Electron. Mater. 45, 736–745 (2016)

    Article  Google Scholar 

  16. O. Gh. Abdullah, S.B. Aziz, M.A. Rasheed, Results Phys. 6, 1103–1108 (2016)

    Article  Google Scholar 

  17. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, C. Sanjeeviraja, Y. Iwai, J. Kawamura, Ionics 19, 1105–1113 (2013)

    Article  Google Scholar 

  18. O.Gh. Abdullah, Y.A.K. Salman, S.A. Saleem, J. Mater. Sci. 27, 3591–3598 (2016)

    Google Scholar 

  19. F.K.M. Genova, S. Selvasekarapandian, S. Karthikeyan, N. Vijaya, S. Sivadevi, C. Sanjeeviraja, Polym-Plast. Technol. Eng. 55, 25–35 (2016)

    Article  Google Scholar 

  20. A.S.A. Khiar, A.K. Arof, Ionics 16, 123–129 (2010)

    Article  Google Scholar 

  21. M. Hema, S. Selvasekarapandian, G. Hirankumar, Ionics 13, 483–487 (2007)

    Article  Google Scholar 

  22. S. Badr, E. Sheha, R.M. Bayomi, M.G. El-Shaarawy, Ionics 16, 269–275 (2010)

    Article  Google Scholar 

  23. A.R. Polu, R. Kumar, H.W. Rhee, Ionics 21, 125–132 (2015)

    Article  Google Scholar 

  24. S.B. Aziz, Z.H.Z. Abidin, Mater. Chem. Phys. 144, 280–286 (2014)

    Article  Google Scholar 

  25. S.B. Aziz, Iran Polym. J. 22, 877–883 (2013)

    Article  Google Scholar 

  26. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Phys. B. 405, 4429–4433 (2010)

    Article  Google Scholar 

  27. N.S. Salleh, S.B. Aziz, Z. Aspanut, M.F.Z. Kadir, Ionics 22, 2157–2167 (2016)

    Article  Google Scholar 

  28. F. Ciardelli, E. Tsuchida, D. Wöhrle, “Macromolecule-Metal Complexes”. doi:10.1007/978-3-642-60986-2 (Springer, Berlin, 1996)

    Book  Google Scholar 

  29. A. Pawlicka, M. Danczuk, W. Wieczorek, E.Z., Monikowska, J. Phys. Chem. A. 112, 8888–8895 (2008)

    Article  Google Scholar 

  30. G. Polizos, A. Kyritsis, P. Pissis, V.V. Shilov, V.V. Shevchenko, Solid State Ionics 136, 1139–1146 (2000)

    Article  Google Scholar 

  31. A.K. Arof, M.Z. Kufian, M.F. Syukur, M.F. Aziz, A.E. Abdelrahman, S.R. Majid, Electrochim. Acta 74, 39–45 (2012)

    Article  Google Scholar 

  32. V. Aravindan, P. Vickraman, Eur. Polym. J 43, 5121–5127 (2007)

    Article  Google Scholar 

  33. Y. Pavani, M. Ravi, S. Bhavani, A.K. Sharma, V.V.R.N. Rao, Polym. Eng. Sci 52, 1685–1692 (2012)

    Article  Google Scholar 

  34. H.P. de Oliveira, M.V.B. dos Santos, C.G. dos Santos, C.P. de Melo, Mater. Charact. 50, 223–226 (2003)

    Article  Google Scholar 

  35. C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, R. Baskaran, M.S. Bhuvaneswari, P.C. Angelo, Eur. Polym. J 42, 2672–2677 (2006)

    Article  Google Scholar 

  36. S.B. Aziz, Z.H.Z. Abidin, J. Appl. Polym. Sci. 132, 41774 (2015)

    Article  Google Scholar 

  37. S.B. Aziz, Appl. Phys. A. 122, 706 (2016)

    Article  Google Scholar 

  38. M.J. Rice, W.L. Roth, J. Solid State Chem. 4, 294–310 (1972)

    Article  Google Scholar 

  39. S. R. Majid, A.K. Arof, Phys. B. 355, 78–82 (2005)

    Article  Google Scholar 

  40. N. Sakhavand, P. Muthuramalingam, R. Shahsavari, Langmuir 29, 8154–8163 (2013)

    Article  Google Scholar 

  41. N.A.N. Aziz, N.K. Idris, M.I.N. Isa, Int. J. Polym. Anal. Charact. 15, 319–327 (2010)

    Article  Google Scholar 

  42. J. Siva Kumar, A.R. Subrahmanyam, M. Jaipal Reddy, U.V. Subba Rao, Mater. Lett. 60, 3346–3349 (2006)

    Article  Google Scholar 

  43. S.B. Aziz, Bull. Mater. Sci. 38, 1597–1602 (2015)

    Article  Google Scholar 

  44. S. Navaratnam, K. Ramesh, W.J. Basirun, Mater. Res. Innov. 15, S184–S186 (2011)

    Article  Google Scholar 

  45. S.B. Aziz, Z.H.Z Abidin, A.K. Arof, Expr. Polym. Lett. 4, 300–310 (2010)

    Article  Google Scholar 

  46. M.F. Shukur, R. Ithnin, H.A. Illias, M.F.Z. Kadir, Opt. Mater. 35, 1834–1841 (2013)

    Article  Google Scholar 

  47. M. Singh, V.K. Singh, K. Surana, B. Bhattacharya, P.K. Singh, H.W. Rhee, J. Ind. Eng. Chem. 19, 819–822 (2013)

    Article  Google Scholar 

  48. R. Richert, J. Non-Cryst. Solids 305, 29–39 (2002)

    Article  Google Scholar 

  49. Shujahadeen B., Aziz, Adv. Mater. Sci. Eng. 2016, 11 (2016). doi:10.1155/2016/2527013

    Google Scholar 

  50. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, Y. Hattori, Mater. Chem. Phys. 98, 55–61 (2006)

    Article  Google Scholar 

  51. S. Ayesh, Chin. J. Polym. Sci. 28, 537–546 (2010)

    Article  Google Scholar 

  52. K. Mohomed, T.G. Gerasimov, F. Moussy, J.P. Harmon, Polymer 46, 3847–3855 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank the Ministry of Higher Education and Scientific Research-Kurdistan Region, University of Sulaimani and University of Human Development, for the financial support given to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.B., Abdullah, O.G. & Rasheed, M.A. Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes: role of lattice energy of salts on electrical DC conductivity. J Mater Sci: Mater Electron 28, 12873–12884 (2017). https://doi.org/10.1007/s10854-017-7117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7117-x

Keywords

Navigation