Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 12761–12767

Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer

Article
  • 123 Downloads

Abstract

The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved.

References

  1. 1.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51(12), 913–915 (1987)CrossRefGoogle Scholar
  2. 2.
    N. Thejokalyani, S.J. Dhoble, Renew. Sust. Energ. Rev 32(5), 448–467 (2014)CrossRefGoogle Scholar
  3. 3.
    A.D. Almeida, B. Santos, B. Paolo, M. Quicheron, Renew. Sust. Energ. Rev 34(34), 30–48 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Higuchi, H. Nakanotani, C. Adachi, Adv. Mater. 27(12), 2019–2023 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Moval, Optik 126(24), 5237–5240 (2015)CrossRefGoogle Scholar
  6. 6.
    D.S.M. Lian, K. Xie, Q.S.M. Yong, J. Soc. Inf. Display. 19(6),453–461 (2011)CrossRefGoogle Scholar
  7. 7.
    C.N. Li, B.W. Xiao, S.Y. Liu, Chin. Phys. Lett. 18(1), 120–122 (2001)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, J. Lee, S.R. Forrest, Nat. Commun. 5(5), 5008–5008 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Mori, T. Mitsuoka, M. Ishii, H. Fujikawa, Y. Taga, Appl. Phys. Lett. 80(21), 3895–3897 (2002)CrossRefGoogle Scholar
  10. 10.
    L.B. Schein, P.J. Nigrey, Phys. Rev. B 18(6), 2929–2930 (1978)CrossRefGoogle Scholar
  11. 11.
    A.R. Brown, D.W.D. Leeuw, E.J. Lous, E.E. Havinga, Synthetic Met. 66(3), 257–261 (1994)CrossRefGoogle Scholar
  12. 12.
    R. Grover, R. Srivastava, M.N. Kamalasanan, D.S. Mehta, Org. Electron. 13(12), 3074–3078 (2012)CrossRefGoogle Scholar
  13. 13.
    D.W. Chou, K.L. Chen, C.J. Huang, Y.J. Tsao, W.R. Chen, T.H. Meen, Thin Solid Films 536(5), 235–239 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Jiang, H. Liu, X. Gong, C. Li, R. Qin, H. Ma, J. Power Sources 331, 240–246 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Xiao, F. Fungura, M. Cai, J.W. Anderegg, J. Shinar, R. Shinar, Org. Electron. 14(10), 2555–2563 (2013)CrossRefGoogle Scholar
  16. 16.
    I. Naik, R. Bhajantri, Mater. Today. 3(10), 3608–3613 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Grover, R. Srivastava, M.N. Kamalasanan, D.S. Mehta, J. Lumin. 146(1), 53–56 (2014)CrossRefGoogle Scholar
  18. 18.
    Z.Y. Lü, Z. Lü, J. Xiao, Vacuum 128, 240–243 (2016)CrossRefGoogle Scholar
  19. 19.
    K.S. Lee, D.H. Kim, D.U. Lee, T.W. Kim, Thin Solid Films 521(3), 193–196 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Naka, H. Okada, H. Onnagawa, T. Tsutsui, Appl. Phys. Lett. 76(2), 197–199 (2000)CrossRefGoogle Scholar
  21. 21.
    C. Wäckerlin, C. Iacovita, D. Chylarecka, P. Fesser, T.A. Jung, N. Ballav, Chem. Commun. 47(32), 9146–9148 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Naito, A. Miura, J. Phys. Chem. 97(23), 6240–6248 (1993)CrossRefGoogle Scholar
  23. 23.
    B.W. Dandrade, S.R. Forrest, A.B. Chwang, Appl. Phys. Lett. 83(19), 3858–3860 (2003)CrossRefGoogle Scholar
  24. 24.
    N. Juhari, W.H.A. Majid, A.I. Zainol, Proc. Eng. 53(9), 354–361 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Zubair, M. Mustafa, A. Ali, Y.H. Doh, K.H. Choi, J. Mater. Sci. Mater. Electron. 26(5), 3344–3351 (2015)CrossRefGoogle Scholar
  26. 26.
    S.J. Hwang, M.C. Tseng, K.C. Hwang, H.H. Yu, J. Disp. Technol. 3(3), 253–258 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Ganzorig, K.J. Kwak, K. Yagi, M. Fujihira, Appl. Phys. Lett. 79(2), 272–274 (2001)CrossRefGoogle Scholar
  28. 28.
    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258(5087), 1474–1476 (1992)CrossRefGoogle Scholar
  29. 29.
    H.S. Kang, K.N. Park, Y.R. Cho, D.W. Park, Y. Choe, J. Ind. Eng. Chem. 15(5), 752–757 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Juan Zhang
    • 1
    • 2
    • 3
  • Liwen Xin
    • 1
    • 2
    • 3
  • Jian Gao
    • 1
    • 2
    • 3
  • Yang Liu
    • 1
    • 2
    • 3
  • Hongsong Rui
    • 1
    • 2
    • 3
  • Xin Lin
    • 1
    • 2
    • 3
  • Yulin Hua
    • 1
    • 2
    • 3
  • Xiaoming Wu
    • 1
    • 2
    • 3
  • Shougen Yin
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Key Laboratory of Display Materials and Photoelectric DevicesMinistry of EducationTianjinChina
  3. 3.Tianjin Key Laboratory of Photoelectric Materials and DevicesTianjinChina

Personalised recommendations