Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 12726–12740 | Cite as

Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid

  • T. Dhanasekaran
  • A. Padmanaban
  • R. Manigandan
  • S. Praveen Kumar
  • A. Stephen
  • V. NarayananEmail author


The hetero-composite metal oxide nanostructures have received great attention owing to their synergistic microstructural features with distinct functionalities. Herein, CuO–Ce2O3 mixed metal oxide (MMO) was synthesized using facile and effective hydrothermal approach. The catalyst material was characterized with essential analytical techniques to confirm the phase, crystallinity and surface morphology. As an active catalyst, the dual performances of effective photodegradation of methylene blue (MB) and electro-oxidative sensing of Isoniazid (INH) was observed. The photodegradation of MB was investigated in the presence of O2 ·−, OH· radicals and photogenerated holes (h+); among these three, h+ involved efficiently for MB photodegradation under visible light. From the Tauc plot, the bandgap energy for CuO and Ce2O3 were found to ~1.8 and ~2.7 eV respectively. Cyclic voltammetry was used to investigate the electro-oxidation of Isoniazid on CuO–Ce2O3 modified/glassy carbon electrode (GCE). It reveals that MMO can facilitate the electrochemical oxidation of Isoniazid with a great decrease in over potential from 0.8 to 0.4 V at pH 7 phosphate buffer solution. Furthermore, the MMO exhibits excellent catalytic performance towards electro-oxidation of INH over the linear range of 6–50 µM with low detection limit of 0.33 µM at 50 mV scan rate. Thus it can be concluded that MMO/GCE could be a potential bi-functional catalyst for the MB photodegradation and efficient sensing of INH.


Ce2O3 Methylene Blue Photocatalytic Activity High Resolution Transmission Electron Microscopy Glassy Carbon Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the University of Hyderabad (HCU) for providing FE-SEM and National Centre for Nano science and Nanotechnology (NCNSNT), University of Madras for XPS and HR-TEM analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2017_7098_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2595 KB)


  1. 1.
    C. Yuan, H.B. Wu, Y. Xie, W.X. David Lou, Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRefGoogle Scholar
  2. 2.
    J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. haw, E. Abelev, A.B. Bocarsly, Chem. Rev. 115, 12888–12935 (2015)CrossRefGoogle Scholar
  3. 3.
    A.B. Bogeat, M.A. Franco, C.F. Gonzalez, A.M. Garcıab, V.G. Serrano, Phys. Chem. Chem. Phys. 16, 25161–25175 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Manigandan, K. Giribabu, S. Munusamy, S. Praveen Kumar, S. Muthamizh, T. Dhanasekaran, A. Padmanaban, R. Suresh, A. Stephen, V. Narayanan, CrystEngComm 17, 2886–2895 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Horie, K. Fujita, H. Kato, S. Endoh, K. Nishio, L.K. Komaba, A. Nakamura, A. Miyauchi, S. Kinugasa, Y. Hagihara, E. Niki, Y. Yoshida, H. Iwahashi, Metallomics 4, 350–360 (2012)CrossRefGoogle Scholar
  6. 6.
    M.B. Gawande, P.S. Branco, K. Parghi, J.J. Shrikhande, R.K. Pandey, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodorod and R.V. Jayaram, Catal. Sci. Technol. 1, 1653–1664 (2011)CrossRefGoogle Scholar
  7. 7.
    G.K. Pradhan, K.M. Parida, Int. J. Eng. Sci. Technol. 2, 53–65 (2010)Google Scholar
  8. 8.
    N. Padmanathan, S. Selladurai, Ionics 20, 409–420 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2, 2915–2923 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Kargar, Y. Jing, S.J. Kim, C.T. Riley, X. Pan, D. Wang, ACS Nano 7, 11112–11120 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Graciani, A.M. Marquez, J.J. Plata, Y. Ortega, N.C. Hernandez, A. Meyer, C.M.Z. Wilson, J.F. Sanz, J. Chem. Theory Comput. 7, 56–65 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Pandiyarajan, R. Saravanan, B. Karthikeyan, F. Gracia, H.D. Mansilla, M.A. Gracia-Pinilla, R.V. Mangalaraja, J. Mater. Sci. 2, 5817 (2016)Google Scholar
  13. 13.
    S. Pal, S. Maiti, U.N. Maiti, K.K. Chattopadhyay, CrystEngComm 17, 1464–1476 (2015)CrossRefGoogle Scholar
  14. 14.
    J.S. Lee, O.S. Kwon, J. Jang, J. Mater. Chem. 22, 14565–14572 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Dhanavel, E.A.K. Nivethaa, K. Dhanapal, V.K. Gupta, V. Narayanan, A. Stephen, RSC Adv. 6, 28871–28886 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Zhang, L. Gu, Y. Lin, Y. Wang, D. Fu, Z. Gu, J. Photochem. Photobiol. A 207 66–72 (2009)CrossRefGoogle Scholar
  17. 17.
    P.K. Rastogi, V. Ganesan, U.P. Azad, Electrochim. Acta 188, 818–824 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Pandey, GK. Khuller, Tube 85, 227–234 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Nagaraja, K.C.S. Murthy, H.S. Yathirajan, Talanta 43, 1075–1080 (1996)CrossRefGoogle Scholar
  20. 20.
    E. Calleri, E.D. Lorenzi, S. Furlanetto, J. Pharma. Biomed. Anal. 29, 1089–1096 (2002)CrossRefGoogle Scholar
  21. 21.
    M.R. Majidi, A. Jouyban, K.A. Zeynali, J. Electroanal. Chem. 589, 32–37 (2006)CrossRefGoogle Scholar
  22. 22.
    W.J. Roth, W. Makowski, B. Marszalek, P. Michorczyk, W. Skuza, B. Gil, J. Mater. Chem. A 2, 15722–15725 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Tamuly, I. Saikia, M. Hazarika, M.R. Das, RSC Adv. 4, 53229–53236 (2014)CrossRefGoogle Scholar
  24. 24.
    G.S. Gund, D.P. Dubal, D.S. Dhawale, S.S. Shinde, C.D. Lokhande, RSC Adv. 3, 24099–24107 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, J. Am. Chem. Soc. 131, 3140–3141 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Wolf, C. Feldmann, J. Mater. Chem. 20, 7694–7699 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Geng, P. Zhang, N. Li, Z. Sun, J. Alloy. Compd. 651, 744–748 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Singha, M. Sahoo, K.M. Parida, Dalton Trans. 40, 11838–11844 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Li, W. Zhang, J. Niu, Y. Chen, ACS Nano 6, 5164–5173 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Jin, H. Mei, H. Wu, S. Wang, Q. Xia, Y. Ding, J. Alloy. Compd. 689, 174–181 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Romeo, K. Bak, J. El Fallah, F. Le Normand, L. Hilaire, Surf. Interface Anal. 20, 508–512 (1993)CrossRefGoogle Scholar
  32. 32.
    P. Bera, C. Anandan, RSC Adv. 4, 62935–62939 (2014)CrossRefGoogle Scholar
  33. 33.
    P. Dutta, S. Pal, M.S. Seehra, Y. Shi, E.M. Eyring, R.D. Ernst, Chem. Mater. 18, 5144–5146 (2006)CrossRefGoogle Scholar
  34. 34.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4, 4596–4604 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Mater. Sci. Eng. 33, 4725–4731 (2013)CrossRefGoogle Scholar
  36. 36.
    C. Slostowski, S. Marre, O. Babot, T. Toupance, C. Aymonier, Langmuir 28, 16656–16663 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Mazloom, F.E. Ghodsi, H. Zamani, H. Golmojdeh, J. Mater. Sci. 7, 5784 (2016)Google Scholar
  38. 38.
    S. Hu, F. Zhou, L. Wang, J. Zhang, Catal. Commun. 12, 794–797 (2011)CrossRefGoogle Scholar
  39. 39.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  40. 40.
    H. Huang, Y. He, X. Du, P.K. Chu, Y. Zhang, ACS Sustain. Chem. Eng. 3, 3262–3273 (2015)CrossRefGoogle Scholar
  41. 41.
    H. Zhang, Z. Ji, T. Xia, H. Meng, C.L. Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y.P. Liao, M. Wang, L. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J.I. Zink, A.E. Nel, ACS Nano 6, 4349–4368 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Marschall, Adv. Funct. Mater. 24, 2421–2440 (2014)CrossRefGoogle Scholar
  43. 43.
    M.T. Qamar, M. Aslam, I.M. Ismail, N. Salah, A. Hameed, ACS Appl. Mater. Interfaces 7, 8757–8769 (2015)CrossRefGoogle Scholar
  44. 44.
    A. Chithambararaj, N.S. Sanjini, A.C. Bose, S. Velmathi, Catal. Sci. Technol. 3, 1405–1414 (2013)CrossRefGoogle Scholar
  45. 45.
    Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong, J. Pan, Appl. Catal. B 204, 78–88 (2017)CrossRefGoogle Scholar
  46. 46.
    R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, J. Alloy. Compd. 598, 151–160 (2014)CrossRefGoogle Scholar
  47. 47.
    O. Kerkez, I. Boz, J. Phys. Chem. Solids 75, 611–618 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Gu, W. Li, F. Wang, H. Li, H. Zhou, Catal. Sci. Technol. 6, 1870–1881 (2016)CrossRefGoogle Scholar
  49. 49.
    J. Tang, Y. Liu, H. Li, Z. Tan, D. Li, Chem. Commun. 49, 5498–5500 (2013)CrossRefGoogle Scholar
  50. 50.
    U.P. Azad, V. Ganesan, J. Solid State Electrochem. 16, 2907–2911 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Praveen Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, A. Padmanaban, T. Dhanasekaran, R. Suresh, V. Narayanan, Electrochim. Acta 194, 116–126 (2016)CrossRefGoogle Scholar
  52. 52.
    L. Fernandez, C. Borras, H. Carrero, Electrochim. Acta 52, 872–884 (2006)CrossRefGoogle Scholar
  53. 53.
    S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, V. Narayanan, J. Alloy. Compd. 619, 601–609 (2015)CrossRefGoogle Scholar
  54. 54.
    E. Laviron, J. Electroanal. Chem. 101, 19–28 (1979)CrossRefGoogle Scholar
  55. 55.
    D. Ranjith Kumar, D. Manoj, J. Santhanalakshmi, J.J. Shim, Electrochim. Acta 176, 514–522 (2015)CrossRefGoogle Scholar
  56. 56.
    R.R. Kharade, S.S. Mali, S.P. Patil, K.R. Patil, M.G. Gang, P.S. Patil, J.H. Kim, P.N. Bhosale, Electrochim. Acta 102, 358–368 (2013)CrossRefGoogle Scholar
  57. 57.
    K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, V. Narayanan, Analyst 138, 5811–5818 (2013)CrossRefGoogle Scholar
  58. 58.
    I.F. Ramos, M.C. Acevedo, M.A. Scibioh and C.R. Cabrera, J. Electroanal. Chem. 650, 98–104 (2010)CrossRefGoogle Scholar
  59. 59.
    C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho. Biosens. Bioelectron. 27, 125-131 (2011)CrossRefGoogle Scholar
  60. 60.
    S. Buratti, B. Brunetti, S Mannino. Talanta 76, 454–457 (2008)CrossRefGoogle Scholar
  61. 61.
    M.A. Karimi, A.H. Mehrjardi, M.M. Ardakani, Int. J. Electrochem. Sci. 5, 1634–1648 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. Dhanasekaran
    • 1
  • A. Padmanaban
    • 1
  • R. Manigandan
    • 1
  • S. Praveen Kumar
    • 1
  • A. Stephen
    • 2
  • V. Narayanan
    • 1
    Email author
  1. 1.Department of Inorganic ChemistryUniversity of MadrasChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations