Skip to main content
Log in

Facile hydrothermal synthesis of large-scale monodisperse 3D flower-like CeO2 nanospheres and their excellent magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The monodisperse 3D flower-like CeO2 nanospheres with many channels have been purposefully synthesized via controlling the morphology of corresponding CeCO3OH precursors by a facile hydrothermal method. The X-ray diffraction results indicate that the calcined samples have a cubic fluorite structure of CeO2 with no crystalline impurity phase. The scanning electron microscope and transmission electron microscope images display that the flower-like nanospheres with a diameter of 200–400 nm are composed of numerous irregular nano-particles as the petals with less than 100 nm in diameter, which are found highly oriented and perpendicularly aligned with lower density to form an open porous structure. X-ray photoelectron spectroscopy and Raman analyses demonstrate that a certain amount of Ce3+ ions and oxygen vacancies exist in the surface of CeO2 samples. The magnetic measurements show that the obtained samples have excellent ferromagnetism at room temperature, which can be reasonably explained for the influences of the morphology of samples, oxygen vacancies and Ce3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Dalton Trans. 41, 14455 (2012)

    Article  Google Scholar 

  2. J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Nanoscale 6, 4072 (2014)

    Article  Google Scholar 

  3. M.T. Mehran, M.S. Khan, J.-W. Lee, R.-H. Song, S.-B. Lee, J.-W. Lee, T.-H. Lim, S.-J. Park, J. Alloys Compd. 709, 453 (2017)

    Article  Google Scholar 

  4. B. Xu, Q.T. Zhang, S.S. Yuan, M. Zhang, T. Ohno, Chem. Eng. J. 260, 126 (2015)

    Article  Google Scholar 

  5. R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, J. Mater. Chem. A 3, 782 (2015)

    Article  Google Scholar 

  6. X.F. Niu, M. Li, B.M. Hao, H.Z. Li, J. Mater. Sci. 27, 6845 (2016)

    Google Scholar 

  7. B.F. Zong, X.F. Niu, J. Mater. Sci. 28, 2545 (2017)

    Google Scholar 

  8. D.M. Kempaiah, S. Yin, T. Sato, CrystEngComm. 13, 741 (2011)

    Article  Google Scholar 

  9. X.Y. Yang, X.J. Yu, G. Li, J. Mater. Sci. 279, 704 (2016)

    Google Scholar 

  10. A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)

    Article  Google Scholar 

  11. B. Mandal, A. Mondal, S.S. Ray, A. Kundu, Dalton Trans. 45, 1679 (2016)

    Article  Google Scholar 

  12. N.S. Ferreira, R.S. Angélica, V.B. Marques, C.C.O. de Lima, M.S. Silva, Mater. Lett. 165, 139 (2016)

    Article  Google Scholar 

  13. D. Jampaiah, P. Venkataswamy, V.E. Coyle, B.M. Reddy, S.K. Bhargava, RSC Adv. 6, 80541 (2016)

    Article  Google Scholar 

  14. F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, J. Mater. Chem. A 3, 634 (2015)

    Article  Google Scholar 

  15. A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Ceram. Int. 40, 4445 (2014)

    Article  Google Scholar 

  16. H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, J. Phys. Chem. C 116, 242 (2012)

    Article  Google Scholar 

  17. X.D. Li, J.G. Li, D. Huo, Z.M. Xiu, X.D. Sun, J. Phys. Chem. C 113, 1806 (2009)

    Article  Google Scholar 

  18. H.F. Xu, H. Li, J. Magn. Magn. Mater. 377, 272 (2015)

    Article  Google Scholar 

  19. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)

    Article  Google Scholar 

  20. S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, J. Phys. Chem. C 114, 19576 (2010)

    Article  Google Scholar 

  21. J.H. Chen, Y.J. Lin, H.C. Chang, Y.H. Chen, L. Horng, C.C. Chang, J. Alloy Compd. 548, 235 (2013)

    Article  Google Scholar 

  22. P. Slusser, D. Kumar, A. Tiwari, Appl. Phys. Lett. 96, 142506 (2010)

    Article  Google Scholar 

  23. A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Phys. Rev. B 76, 165206 (2007)

    Article  Google Scholar 

  24. F.M. Meng, H.J. Li, J.F. Gong, Z.H. Fan, J. Mater. Sci. 27, 8433 (2016)

    Google Scholar 

  25. M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, A.O.d.. Zevallos, A.C. Doriguetto, H.B.d.. Carvalho, Phys. Chem. Chem. Phys. 17, 3072 (2015)

    Article  Google Scholar 

  26. J.F. Gong, F.M. Meng, Z.H. Fan, H.J. Li, Electron. Mater. Lett. 12, 846 (2016)

    Article  Google Scholar 

  27. J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, J. Alloy. Compd. 689, 606 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research is partially supported by Foundation for National Science Foundation of China (Grant Nos. 11401008, 11601007), Young Talents in College of Anhui Province (Grant Nos. 2010SQRL053, 2012SQRL051), and Project funded by China Postdoctoral Science Foundation (No. 2016M592030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Gao, J., Geng, X. et al. Facile hydrothermal synthesis of large-scale monodisperse 3D flower-like CeO2 nanospheres and their excellent magnetic properties. J Mater Sci: Mater Electron 28, 12306–12311 (2017). https://doi.org/10.1007/s10854-017-7048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7048-6

Keywords

Navigation