Skip to main content
Log in

Near infrared ray to ultraviolet up-conversion luminescence of Tm3+–Yb3+ co-doped (CaY)F2 nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Near Infrared Ray (NIR)-ultraviolet (UV) up-conversion luminescence (UCL) materials have potential application in many fields of biological science, including cells and tissue labeling for bio-imaging, bio-detection, therapy or multiplexed analysis. Tm3+/Yb3+ co-doped (CaY)F2 nanocrystals have been successfully synthetized through the hydrothermal method, and the effect of different synthesis conditions on the morphology and luminescence property of (CaY)F2 phosphors have been discussed. When the molar concentration of Tm3+ and Yb3+ were 0.4 and 20%, respectively, the obtained (CaY)F2 nanocrystals have excellence density, crystallinity, single particle dispersion, uniform particle size (55.5 nm), and high up-conversion luminescence efficiency with the hydrothermal conditions of 180° C and 12 h and calcined temperature of 500° C. Specifically, the synthesized nanocrystals could be stably excited by a 980 nm pump light, converted to 360 nm UV. In addition, the cytotoxicity of (CaY)F2 nanocrystals has also be explored, which shows low cytotoxicity examined by the L929 murine fibroblast cells. With this biocompatibility and excellent up-conversion luminescence properties, the obtained (CaY)F2 nanocrystals have a high potential as biomaterials for photodynamic therapy assisted by TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.M. Goldys, K. Drozdowicz-Tomsia, S. Jinjun, D. Dosev, I.M. Kennedy, S. Yatsunenko, M. Godlewski, Optical characterization of eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method. J. Am. Chem. Soc. 128(45), 14498–14505 (2006)

    Article  Google Scholar 

  2. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, White light emitting diodes with super-high luminous efficacy. J. Phys. D 43(35), 354002 (2010)

    Article  Google Scholar 

  3. M.C. Neto, G.H. Silva, A.P. Carmo, A.S. Pinheiro, N.O. Dantas, M.J.V. Bell, V. Anjos, Optical properties of oxide glasses with semiconductor nanoparticles co-doped with rare earth ions. Chem. Phys. Lett. 588, 188–192 (2013)

    Article  Google Scholar 

  4. P.F. Smet, I. Moreels, Z. Hens, D. Poelman, Luminescence in sulfides: a rich history and a bright future. Materials 3(4), 2834–2883 (2010)

    Article  Google Scholar 

  5. C. Bouzigues, T. Gacoin, A. Alexandrou, Biological applications of rare-earth based nanoparticles. Acs Nano 5(11), 8488–8505 (2011)

    Article  Google Scholar 

  6. S. Hao, G. Chen, C. Yang, Sensing using rare-earth-doped upconversion nanoparticles, Theranostics 3(5), 331–345 (2013)

    Article  Google Scholar 

  7. W. Pan, J. Zhao, Q. Chen, Fabricating upconversion fluorescent probes for rapidly sensing foodborne pathogens. J. Agric. Food Chem. 63(36), 8068–8074 (2015)

    Article  Google Scholar 

  8. F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8), 1839–1854 (2010)

    Article  Google Scholar 

  9. M. Wang, G. Abbineni, A. Clevenger, C. Mao, S. Xu, Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine 7(6), 710–729 (2011)

    Article  Google Scholar 

  10. J. Zhou, Z. Liu, F. Li, Upconversion nanophosphors for small-animal imaging, Chem. Soc. Rev. 41(3), 1323–1349 (2012)

    Article  Google Scholar 

  11. J. Gao, X. Luan, J. Wang, B. Wang, K. Li, Y. Li, P. Kang, G. Han, Preparation of Er3+:YAlO3/Fe-doped TiO2–ZnO and its application in photocatalytic degradation of dyes under solar light irradiation. Desalination 268(1–3), 68–75 (2011)

    Article  Google Scholar 

  12. T. Li, S. Liu, H. Zhang, E. Wang, L. Song, P. Wang, Ultraviolet upconversion luminescence in Y2O3:Yb3+ ,Tm3+ nanocrystals and its application in photocatalysis. J. Mater. Sci. 46(9), 2882–2886 (2010)

    Article  Google Scholar 

  13. L. Yin, J. Gao, J. Wang, X. Luan, P. Kang, Y. Li, K. Li, X. Zhang, Synthesis of Er3+:Y3Al5O12 and its effects on the solar light photocatalytic activity of TiO2–ZrO2 composite. Res. Chem. Intermed. 38(2), 523–536 (2011)

    Article  Google Scholar 

  14. Z. Zhang, W. Wang, W. Yin, M. Shang, L. Wang, S. Sun, Inducing photocatalysis by visible light beyond the absorption edge: Effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl. Catal. B 101(1–2), 68–73 (2010)

    Article  Google Scholar 

  15. O. Carp, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1–2), 33–177 (2004)

    Article  Google Scholar 

  16. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107(7), 2891–2959 (2007)

    Article  Google Scholar 

  17. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005)

    Article  Google Scholar 

  18. V. Štengl, S. Bakardjieva, N. Murafa, Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys. 114(1), 217–226 (2009)

    Article  Google Scholar 

  19. P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Osiko, Nanofluorides. J. Fluorine Chem. 132(12), 1012–1039 (2011)

    Article  Google Scholar 

  20. C. Li, J. Lin, Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 20(33), 6831 (2010)

    Article  Google Scholar 

  21. W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier, Local and overall ionic conductivity in nanocrystalline CaF2. Solid State Ion. 131(131), 159–164 (2000)

    Article  Google Scholar 

  22. G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, R. Kim, Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Exp. 16(16), 11907–11914 (2008)

    Article  Google Scholar 

  23. H. Zhang, Y. Li, Y. Lin, Y. Huang, X. Duan, Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals. Nanoscale 3(3), 963–966 (2011)

    Article  Google Scholar 

  24. B.G. Wybourne, Spectroscopic properties of rare earths. (1965).

  25. Y. Fukuda, Thermoluminescence in sintered CaF2:Tb, J. Radiat. Res. 43(4) S67–S69 (2002)

    Article  Google Scholar 

  26. S.S. Pote, C.P. Joshi, S.V. Moharil, P.L. Muthal, S.M. Dhopte, Luminescence of Ce3+ in Ca0.65La0.35F2.35 host. J. Lumin. 130(4), 666–668 (2010)

    Article  Google Scholar 

  27. S.S. Pote, C.P. Joshi, S.V. Moharil, P.L. Muthal, S.M. Dhopte, Luminescence in Ca1–xYxF2+x. Physica B Condensed Matter. 406(s 6–7) 1308–1311 (2011)

    Article  Google Scholar 

  28. N.S. Ugemuge, D.S. Tajne, S.M. Dhopte, P.L. Muthal, S.V. Moharil, Preparation of CaF2 based phosphors by solid state metathesis. Physica B 406(1), 45–47 (2011)

    Article  Google Scholar 

  29. T. Jiang, W. Qin, D. Zhao, Size-dependent upconversion luminescence in CaF2:Yb3+ ,Tm3+ nanocrystals. Mater. Lett. 74, 54–57 (2012)

    Article  Google Scholar 

  30. F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130(17), 5642–5643 (2008)

    Article  Google Scholar 

  31. G. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, P.N. Prasad, Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4, 3163–3168 (2010)

    Article  Google Scholar 

  32. H.J. Liang, Y.D. Zheng, L. Wu, L.X. Liu, Z.G. Zhang, W.W. Cao, Enhancing upconversion emissions of NaTm0.02YbxY0.98–xF4 nanocrystals through increasing Yb3+ doping. J. Lumin. 131(8), 1802–1806 (2011)

    Article  Google Scholar 

  33. J. Cai, H. Pan, Y. Wang, Luminescence properties of red-emitting Ca2Al2SiO7:Eu3+ nanoparticles prepared by sol-gel method, Rare Metals 30(4), 374–380 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Key Research and Development Program of China (Project No. 2016YFB1101103); National Natural Science Foundation of China (Project Nos. 51171058, 31600753); Natural Science Foundation of Hebei Province of China (Project Nos. E2013202022,); Outstanding Youth Foundation of Hebei Province of China (Project No. E2015202282); Natural Science Foundation of Tianjin (Project No. 16JCYBJC43400); Science and Technology Correspondent Project of Tianjin (Nos. 14JCTPJC00496, 15JCYBJC29900) and Tianjin Municipal Planning Commission of science and Technology Fund (No. 2015K2112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zhao or Chunyong Liang.

Additional information

Wenting Hu and Xin Hu have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Hu, X., Wang, H. et al. Near infrared ray to ultraviolet up-conversion luminescence of Tm3+–Yb3+ co-doped (CaY)F2 nanocrystals. J Mater Sci: Mater Electron 28, 12290–12296 (2017). https://doi.org/10.1007/s10854-017-7046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7046-8

Navigation