Skip to main content
Log in

Enhanced luminescence properties of low-cost Mn2+ doped willemite based glass–ceramics as potential green phosphor materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-cost Mn2+-doped willemite (α-Zn2SiO4:Mn2+) based glass–ceramics were synthesized by conventional melt–quenching technique using waste soda lime silica (SLS) glasses, zinc oxide (ZnO) and Manganese oxide (MnO) as precursors. The effect of different MnO percentage doping on physical, structural, optical and luminescent performance α-Zn2SiO4:Mn2+ based glass–ceramics were comprehensively studies in this work. The presence of α-Zn2SiO4:Mn2+ crystal phase and microstructure was confirmed by X-ray diffraction and field emission scanning electron microscopy spectroscopy. From the Scherrer’s formula, α-Zn2SiO4:Mn2+ have an average crystallite size of 30–40 nm, respectively. Fourier transform infrared reflection spectroscopy displays the structural growth of α-Zn2SiO4:Mn2+ crystal. The green emission centered at about 527 nm from the α-Zn2SiO4:Mn2+ crystal exhibit a resulted from 4T16A1 energy transition of Mn2+ ions. Intense emissions of Mn2+ ions at 260 nm excitation were occurs may be caused by the increase of Mn2+ ions into α-Zn2SiO4 crystal structure with lower phonon. Based on the results achieved, this low-cost α-Zn2SiO4:Mn2+ based glass–ceramic exhibit a huge potential to act as a green phosphor in opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.R. Ronda, T. Jüstel, H. Nikol, Rare earth phosphors: fundamentals and applications. J. Alloys Compd. 275, 669–676 (1998)

    Article  Google Scholar 

  2. D. Behal, B. Röska, U. Gattermann, A. Reul, S.H. Park, Structure analysis of a Mn-doped willemite-type compound, H0.12(Zn1.89(3)Mn0.05(1)(0.06)Si1.00(1)O4.. J. Solid State Chem. 210(1), 144–149 (2014)

    Article  Google Scholar 

  3. A.G. Joly, W. Chen, J. Zhang, S. Wang, Electronic energy relaxation and luminescence decay dynamics of Eu3+ in Zn2SiO4:Eu3+ phosphors. J. Lumin. 126(2), 491–496 (2007)

    Article  Google Scholar 

  4. M. Takesue, H. Hayashi, R.L. Smith, Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog. Cryst. Growth Charact. Mater. 55(3), 98–124 (2009)

    Article  Google Scholar 

  5. M.H.M. Zaid, K.A. Matori, H.A.A. Sidek, M.K. Halimah, Z.A. Wahab, Y.W. Fen, I.M. Alibe, Synthesis and characterization of low cost willemite based glass–ceramic for opto-electronic applications. J. Mater. Sci. 27(11), 11158–11167 (2016)

    Google Scholar 

  6. C.E. Rivera-Enríquez, A. Fernández-Osorio, J. Chávez-Fernández, Luminescence properties of α-and β-Zn2SiO4:Mn nanoparticles prepared by a co-precipitation method. J. Alloys Compd. 688, 775–782 (2016)

    Article  Google Scholar 

  7. F. Su, B. Ma, K. Ding, G. Li, S. Wang, W. Chen, A.G. Joly, D.E. McCready, Luminescence temperature and pressure studies of Zn2SiO4 phosphors doped with Mn2+ and Eu3+ ions. J. Lumin. 116(1), 117–126 (2006)

    Article  Google Scholar 

  8. B.C. Babu, & S. Buddhudu, Dielectric properties of willemite Zn2SiO4 nano powders by sol–gel method. Physics Procedia 49, 128–136 (2013)

    Article  Google Scholar 

  9. Y. Jiang, J. Chen, Z. Xie, L. Zheng, Syntheses and optical properties of α-and β-Zn2SiO4:Mn nanoparticles by solvothermal method in ethylene glycol-water system. Mater. Chem. Phys. 120(2), 313–318 (2010)

    Article  Google Scholar 

  10. M. Mai, C. Feldmann, Two-color emission of Zn2SiO4:Mn from ionic liquid mediated synthesis. Solid State Sci. 11(2), 528–532 (2009)

    Article  Google Scholar 

  11. K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El Mir, Luminescence properties of green emission of SiO2/Zn2SiO4:Mn nanocomposite prepared by sol–gel method. Physica E 53, 48–54 (2013)

    Article  Google Scholar 

  12. K. Omri, L. El Mir, Effect of manganese concentration on photoluminescence properties of Zn2SiO4:Mn nanophosphor material. Superlattices Microstruct. 70, 24–32 (2014)

    Article  Google Scholar 

  13. B. Pandey, D.L. Weathers, Temperature dependent formation of ZnO and Zn2SiO4 nanoparticles by ion implantation and thermal annealing. Nucl. Instrum. Methods Phys. Res. Sect. B 332, 359–363 (2014)

    Article  Google Scholar 

  14. B.C. Babu, B.V. Rao, M. Ravi, S. Babu, Structural, microstructural, optical, and dielectric properties of Mn2+: willemite Zn2SiO4 nanocomposites obtained by a sol–gel method. J. Mol. Struct. 1127, 6–14 (2017)

    Article  Google Scholar 

  15. N.F. Samsudin, K.A. Matori, Z.A. Wahab, Y.W. Fen, J.Y.C. Liew, W.F. Lim, M.H.M. Zaid, N.A.S Omar, Manganese modified structural and optical properties of zinc soda lime silica glasses. Appl. Opt. 55(9), 2182–2187 (2016)

    Article  Google Scholar 

  16. R. Ye, H. Ma, C. Zhang, Y. Gao, Y. Hua, D. Deng, P. Liu, S. Xu, Luminescence properties and energy transfer mechanism of Ce3+/Mn2+ co-doped transparent glass-ceramics containing β-Zn2SiO4 nano-crystals for white light emission. J. Alloys Compd. 566, 73–77 (2013)

    Article  Google Scholar 

  17. M.K. Kretov, I.M. Iskandarova, B.V. Potapkin, A.V. Scherbinin, A.M. Srivastava, N.F. Stepanov, Simulation of structured 4T1→ 6A1 emission bands of Mn2+ impurity in Zn2SiO4: a first-principle methodology. J. Lumin. 132(8), 2143–2150 (2012)

    Article  Google Scholar 

  18. K. Omri, O.M. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 43(8), 6585–6591 (2017)

    Article  Google Scholar 

  19. V. Sivakumar, A. Lakshmanan, S. Kalpana, R.S. Rani, R.S. Kumar, M.T. Jose, Low-temperature synthesis of Zn2SiO4:Mn green photoluminescence phosphor. J. Lumin. 132(8), 1917–1920 (2012)

    Article  Google Scholar 

  20. A.J.A. Al-Nidawi, K.A. Matori, A. Zakaria, MHM Zaid (2017) Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash. Results Phys. 7(1), 955–961

    Article  Google Scholar 

  21. M. Mazaheri, A.M. Zahedi, S.K. Sadrnezhaad, Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. J. Am. Ceram. Soc. 91(1), 56–63 (2008)

    Article  Google Scholar 

  22. Q.Y. Zhang, K. Pita, C.H. Kam, Sol–gel derived zinc silicate phosphor films for full-color display applications. J. Phys. Chem. Solids 64(2), 333–338 (2003)

    Article  Google Scholar 

  23. C. Bertail, S. Maron, V. Buissette, T. Le Mercier, T. Gacoin, J.P. Boilot, Structural and photoluminescent properties of Zn2SiO4:Mn2+ nanoparticles prepared by a protected annealing process. Chem. Mater. 23(11), 2961–2967 (2011)

    Article  Google Scholar 

  24. T.H. Cho, H.J. Chang, Preparation and characterizations of Zn2SiO4:Mn green phosphors. Ceram. Int. 29(6), 611–618 (2003)

    Article  Google Scholar 

  25. M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. J. Mater. Sci. 26(6), 3722–3729 (2015)

    Google Scholar 

  26. A. Tarafder, A.R. Molla, C. Dey, B. Karmakar, Thermal, structural, and enhanced photoluminescence properties of Eu3+-doped transparent willemite glass–ceramic nanocomposites. J. Am. Ceram. Soc. 96(8), 2424–2431 (2013)

    Article  Google Scholar 

  27. A. Tarafder, A.R. Molla, S. Mukhopadhyay, B. Karmakar, Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO–Al2O3 –B2O3 –SiO2 glass derived willemite glass–ceramic nanocomposites. Opt. Mater. 36(9), 1463–1470 (2014)

    Article  Google Scholar 

  28. N. Effendy, Z.A. Wahab, M.K. Halimah, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials. Opt. Int J Light Electron Opt. 127(24), 11698–11705 (2016)

    Article  Google Scholar 

  29. J. El Ghoul, K. Omri, A. Alyamani, C. Barthou, L. El Mir, Synthesis and luminescence of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:Mn composite with sol–gel methods. J. Lumin. 138, 218–222 (2013)

    Article  Google Scholar 

  30. K.W. Park, H.S. Lim, S.W. Park, G. Deressa, J.S. Kim, Strong blue absorption of green Zn2SiO4:Mn2+ phosphor by doping heavy Mn2+ concentrations. Chem. Phys. Lett. 636, 141–145 (2015)

    Article  Google Scholar 

  31. J. Liu, Y. Wang, X. Yu, J. Li, Enhanced photoluminescence properties of Zn2SiO4:Mn2+ co-activated with Y3+/Li+ under VUV excitation. J. Lumin. 130(11), 2171–2174 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from Ministry of Science, Technology and Innovation, Malaysia and Universiti Putra Malaysia (UPM), each under the Fundamental Research Grant Scheme (FRGS) and Research University Grant Scheme (RUGS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khamirul Amin Matori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaid, M.H.M., Matori, K.A., Aziz, S.H.A. et al. Enhanced luminescence properties of low-cost Mn2+ doped willemite based glass–ceramics as potential green phosphor materials. J Mater Sci: Mater Electron 28, 12282–12289 (2017). https://doi.org/10.1007/s10854-017-7045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7045-9

Keywords

Navigation