Abstract
Low-cost Mn2+-doped willemite (α-Zn2SiO4:Mn2+) based glass–ceramics were synthesized by conventional melt–quenching technique using waste soda lime silica (SLS) glasses, zinc oxide (ZnO) and Manganese oxide (MnO) as precursors. The effect of different MnO percentage doping on physical, structural, optical and luminescent performance α-Zn2SiO4:Mn2+ based glass–ceramics were comprehensively studies in this work. The presence of α-Zn2SiO4:Mn2+ crystal phase and microstructure was confirmed by X-ray diffraction and field emission scanning electron microscopy spectroscopy. From the Scherrer’s formula, α-Zn2SiO4:Mn2+ have an average crystallite size of 30–40 nm, respectively. Fourier transform infrared reflection spectroscopy displays the structural growth of α-Zn2SiO4:Mn2+ crystal. The green emission centered at about 527 nm from the α-Zn2SiO4:Mn2+ crystal exhibit a resulted from 4T1–6A1 energy transition of Mn2+ ions. Intense emissions of Mn2+ ions at 260 nm excitation were occurs may be caused by the increase of Mn2+ ions into α-Zn2SiO4 crystal structure with lower phonon. Based on the results achieved, this low-cost α-Zn2SiO4:Mn2+ based glass–ceramic exhibit a huge potential to act as a green phosphor in opto-electronic devices.
Similar content being viewed by others
References
C.R. Ronda, T. Jüstel, H. Nikol, Rare earth phosphors: fundamentals and applications. J. Alloys Compd. 275, 669–676 (1998)
D. Behal, B. Röska, U. Gattermann, A. Reul, S.H. Park, Structure analysis of a Mn-doped willemite-type compound, H0.12(Zn1.89(3)Mn0.05(1)(0.06)Si1.00(1)O4.. J. Solid State Chem. 210(1), 144–149 (2014)
A.G. Joly, W. Chen, J. Zhang, S. Wang, Electronic energy relaxation and luminescence decay dynamics of Eu3+ in Zn2SiO4:Eu3+ phosphors. J. Lumin. 126(2), 491–496 (2007)
M. Takesue, H. Hayashi, R.L. Smith, Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog. Cryst. Growth Charact. Mater. 55(3), 98–124 (2009)
M.H.M. Zaid, K.A. Matori, H.A.A. Sidek, M.K. Halimah, Z.A. Wahab, Y.W. Fen, I.M. Alibe, Synthesis and characterization of low cost willemite based glass–ceramic for opto-electronic applications. J. Mater. Sci. 27(11), 11158–11167 (2016)
C.E. Rivera-Enríquez, A. Fernández-Osorio, J. Chávez-Fernández, Luminescence properties of α-and β-Zn2SiO4:Mn nanoparticles prepared by a co-precipitation method. J. Alloys Compd. 688, 775–782 (2016)
F. Su, B. Ma, K. Ding, G. Li, S. Wang, W. Chen, A.G. Joly, D.E. McCready, Luminescence temperature and pressure studies of Zn2SiO4 phosphors doped with Mn2+ and Eu3+ ions. J. Lumin. 116(1), 117–126 (2006)
B.C. Babu, & S. Buddhudu, Dielectric properties of willemite Zn2SiO4 nano powders by sol–gel method. Physics Procedia 49, 128–136 (2013)
Y. Jiang, J. Chen, Z. Xie, L. Zheng, Syntheses and optical properties of α-and β-Zn2SiO4:Mn nanoparticles by solvothermal method in ethylene glycol-water system. Mater. Chem. Phys. 120(2), 313–318 (2010)
M. Mai, C. Feldmann, Two-color emission of Zn2SiO4:Mn from ionic liquid mediated synthesis. Solid State Sci. 11(2), 528–532 (2009)
K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El Mir, Luminescence properties of green emission of SiO2/Zn2SiO4:Mn nanocomposite prepared by sol–gel method. Physica E 53, 48–54 (2013)
K. Omri, L. El Mir, Effect of manganese concentration on photoluminescence properties of Zn2SiO4:Mn nanophosphor material. Superlattices Microstruct. 70, 24–32 (2014)
B. Pandey, D.L. Weathers, Temperature dependent formation of ZnO and Zn2SiO4 nanoparticles by ion implantation and thermal annealing. Nucl. Instrum. Methods Phys. Res. Sect. B 332, 359–363 (2014)
B.C. Babu, B.V. Rao, M. Ravi, S. Babu, Structural, microstructural, optical, and dielectric properties of Mn2+: willemite Zn2SiO4 nanocomposites obtained by a sol–gel method. J. Mol. Struct. 1127, 6–14 (2017)
N.F. Samsudin, K.A. Matori, Z.A. Wahab, Y.W. Fen, J.Y.C. Liew, W.F. Lim, M.H.M. Zaid, N.A.S Omar, Manganese modified structural and optical properties of zinc soda lime silica glasses. Appl. Opt. 55(9), 2182–2187 (2016)
R. Ye, H. Ma, C. Zhang, Y. Gao, Y. Hua, D. Deng, P. Liu, S. Xu, Luminescence properties and energy transfer mechanism of Ce3+/Mn2+ co-doped transparent glass-ceramics containing β-Zn2SiO4 nano-crystals for white light emission. J. Alloys Compd. 566, 73–77 (2013)
M.K. Kretov, I.M. Iskandarova, B.V. Potapkin, A.V. Scherbinin, A.M. Srivastava, N.F. Stepanov, Simulation of structured 4T1→ 6A1 emission bands of Mn2+ impurity in Zn2SiO4: a first-principle methodology. J. Lumin. 132(8), 2143–2150 (2012)
K. Omri, O.M. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 43(8), 6585–6591 (2017)
V. Sivakumar, A. Lakshmanan, S. Kalpana, R.S. Rani, R.S. Kumar, M.T. Jose, Low-temperature synthesis of Zn2SiO4:Mn green photoluminescence phosphor. J. Lumin. 132(8), 1917–1920 (2012)
A.J.A. Al-Nidawi, K.A. Matori, A. Zakaria, MHM Zaid (2017) Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash. Results Phys. 7(1), 955–961
M. Mazaheri, A.M. Zahedi, S.K. Sadrnezhaad, Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. J. Am. Ceram. Soc. 91(1), 56–63 (2008)
Q.Y. Zhang, K. Pita, C.H. Kam, Sol–gel derived zinc silicate phosphor films for full-color display applications. J. Phys. Chem. Solids 64(2), 333–338 (2003)
C. Bertail, S. Maron, V. Buissette, T. Le Mercier, T. Gacoin, J.P. Boilot, Structural and photoluminescent properties of Zn2SiO4:Mn2+ nanoparticles prepared by a protected annealing process. Chem. Mater. 23(11), 2961–2967 (2011)
T.H. Cho, H.J. Chang, Preparation and characterizations of Zn2SiO4:Mn green phosphors. Ceram. Int. 29(6), 611–618 (2003)
M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. J. Mater. Sci. 26(6), 3722–3729 (2015)
A. Tarafder, A.R. Molla, C. Dey, B. Karmakar, Thermal, structural, and enhanced photoluminescence properties of Eu3+-doped transparent willemite glass–ceramic nanocomposites. J. Am. Ceram. Soc. 96(8), 2424–2431 (2013)
A. Tarafder, A.R. Molla, S. Mukhopadhyay, B. Karmakar, Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO–Al2O3 –B2O3 –SiO2 glass derived willemite glass–ceramic nanocomposites. Opt. Mater. 36(9), 1463–1470 (2014)
N. Effendy, Z.A. Wahab, M.K. Halimah, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials. Opt. Int J Light Electron Opt. 127(24), 11698–11705 (2016)
J. El Ghoul, K. Omri, A. Alyamani, C. Barthou, L. El Mir, Synthesis and luminescence of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:Mn composite with sol–gel methods. J. Lumin. 138, 218–222 (2013)
K.W. Park, H.S. Lim, S.W. Park, G. Deressa, J.S. Kim, Strong blue absorption of green Zn2SiO4:Mn2+ phosphor by doping heavy Mn2+ concentrations. Chem. Phys. Lett. 636, 141–145 (2015)
J. Liu, Y. Wang, X. Yu, J. Li, Enhanced photoluminescence properties of Zn2SiO4:Mn2+ co-activated with Y3+/Li+ under VUV excitation. J. Lumin. 130(11), 2171–2174 (2010)
Acknowledgements
The financial support from Ministry of Science, Technology and Innovation, Malaysia and Universiti Putra Malaysia (UPM), each under the Fundamental Research Grant Scheme (FRGS) and Research University Grant Scheme (RUGS) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zaid, M.H.M., Matori, K.A., Aziz, S.H.A. et al. Enhanced luminescence properties of low-cost Mn2+ doped willemite based glass–ceramics as potential green phosphor materials. J Mater Sci: Mater Electron 28, 12282–12289 (2017). https://doi.org/10.1007/s10854-017-7045-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-017-7045-9