Skip to main content
Log in

Preparation, characterization and photocatalytic properties of La/WO3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La/WO3 system were successfully built via a simply crystallization precipitation method using sodium tungstate and lanthanum nitrate hexahydrate as precursor. Samples were characterized by powder X-ray diffraction, UV–Vis absorbance spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and N2 adsorption–desorption isotherms (BET). Results showed that La does not enter into the crystal lattice of WO3 but located in the interstitial site and accordingly presented as the form of La–O–W in the interstitial site. In addition, doping of La restrict the grain size and the minimum crystal size was 28 nm at La:W = 3:10. Photocatalytic degradation of Rhodamine B showed that the modified samples had better catalytic performance. When La:W reaches 0.3, the La/WO3 nano-materials exhibits the highest photocatalytic activity, which can be attributed to the synergic effect of the higher BET surface area, surface hydroxyl content and optimum La contents. A possible mechanism for the photocatalytic degradation of RhB has also been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.X. Zhang, X.D. Hao, M. Kuang et al., Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites. Appl. Surf. Sci. 283, 505–512 (2013)

    Article  Google Scholar 

  2. J.J. Li, J.T. Feng, W. Yan, Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for methylene blue. Appl. Surf. Sci. 279, 400–408 (2013)

    Article  Google Scholar 

  3. J.Y. Luo, Z. Cao, F. Chen et al., Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets. Appl. Surf. Sci. 287, 270–275 (2013)

    Article  Google Scholar 

  4. S.V. Mohite, K.Y. Rajpure, Oxidative degradation of salicylic acid by sprayed WO3 photocatalyst. Mater. Sci. Eng. B 200, 78–83 (2015)

    Article  Google Scholar 

  5. K. Hayat, M.A. Gondal, M.M. Khaled et al., Laser induced photocatalytic degradation of hazardous dye (Safranin–O) using self synthesized nanocrystalline WO3. J. Hazard. Mater. 186, 1226–1233 (2011)

    Article  Google Scholar 

  6. S. Girish Kumar, S.K.S.R. Koteswara Rao. Tungsten-based nanomaterials (WO3 & Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl. Surf. Sci. 355, 939–958 (2015)

    Article  Google Scholar 

  7. K. Santhi, C. Rani, S. Karuppuchamy, Degradation of Alizarin Red S dye using Ni doped WO3 photocatalyst. J. Mater. Sci. 27, 5033–5038 (2016)

    Google Scholar 

  8. IM Szilágyi, B. Fórizs, O. Rosseler et al., WO3 photocatalysts: Influence of structure and composition. J. Catal. 294, 119–127 (2012)

    Article  Google Scholar 

  9. S. Ramkumar, G. Rajarajan, Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films. J. Mater. Sci. 27, 1847–1853 (2016)

    Google Scholar 

  10. B. Ma, J.F. Guo, W.L. Dai et al., Ag-AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity. Appl. Catal. B 123, 193–199 (2012)

    Article  Google Scholar 

  11. D.Q. Bi, Y.M. Xu, Synergism between Fe2O3 and WO3 particles: photocatalytic activity enhancement and reaction mechanism. J. Mol. Catal. A 367, 103–107 (2013)

    Article  Google Scholar 

  12. XY Wang, LX Pang, XY Hu et al., Fabrication of ion doped WO3 photocatalysts through bulk and surface doping. J. Environ. Sci. 35, 76–82 (2015)

    Article  Google Scholar 

  13. F. Riboni, LG Bettini, DW Bahnemann et al., WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catal. Today 209, 28–34 (2013)

    Article  Google Scholar 

  14. C. Janáky, K. Rajeshwar, N.R. Tacconi et al., Tungsten-based oxide semiconductors for solar hydrogen generation. Catal. Today 199, 53–64 (2013)

    Article  Google Scholar 

  15. N.A. Ramos-Delgado, M.A. Gracia-Pinilla, L. Maya-Trevi˜no et al., Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J. Hazard. Mater. 263, 36–44 (2013)

    Article  Google Scholar 

  16. C.W. Lai, S.B. Abd Hamid, S. Sreekantan, A novel solar driven photocatalyst: well-aligned anodic WO3 nanotubes. Int. J. Photoenergy. (2013). doi:10.1155/2013/745301

    Google Scholar 

  17. C.H. Wang, X.T. Zhang, B. Yuan et al., Multi-heterojunction photocatalysts based on WO3 nanorods: structural design and optimization for enhanced photocatalytic activity under visible light. Chem. Eng. J. 237, 29–37 (2014)

    Article  Google Scholar 

  18. H. Huang, Z.K. Yue, Y.J. Aong et al., Mesoporous tungsten oxides as photocatalysts for O2 evolution under irradiation of visible light. Mater. Lett. 88, 57–60 (2012)

    Article  Google Scholar 

  19. D. Madhan, M. Parthibavarman, P. Rajkumar et al., Influence of Zn doping on structural, optical and photocatalytic activity of WO3 nanoparticles by a novel microwave irradiation technique. J. Mater. Sci. 26, 6823–6830 (2015)

    Google Scholar 

  20. K. Villa, S. Murcia-López, J.R. Morante et al., An insight on the role of La in mesoporos WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B 187, 30–36 (2016)

    Article  Google Scholar 

  21. H. Kim, H.-Y. Yoo, S. Hong et al., Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation. Appl. Catal. B 162, 515–523 (2015)

    Article  Google Scholar 

  22. H Lee, J Choi, S Lee et al., Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent. Appl. Catal. B 138, 311–317 (2013)

    Article  Google Scholar 

  23. L.H. Wan, J.Y. Sheng, H.H. Chen et al., Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3. J. Hazard. Mater. 262, 114–120 (2013)

    Article  Google Scholar 

  24. W.Z. Li, J. Li, X. Wang et al., Preparation and water-splitting photocatalytic behavior of S-doped WO3. Appl. Surf. Sci. 263, 157–162 (2012)

    Article  Google Scholar 

  25. SM Harshulkhan, K Janaki, G Velraj et al., Effect of Ag doping on structural, optical and photocatalytic activity of tungsten oxide (WO3) nanoparticles. J. Mater. Sci. 27, 4744–4751 (2016)

    Google Scholar 

  26. MK Aminian, M Hakimi, Surface modification by loading alkaline hydroxides to enhance the photoactivity of WO3. Catal. Sci. Technol. 4, 657–664 (2014)

    Article  Google Scholar 

  27. C.L. Yu, K. Yang, Q. Shu et al., Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance. Chin. J. Catal. 32, 555–565 (2011)

    Article  Google Scholar 

  28. Y.C. Chai, L. Lin, K. Zhang et al., Efficient visible-light photocatalysts from Gd–La codoped TiO2 nanotubes. Ceram. Int. 40, 2691–2696 (2014)

    Article  Google Scholar 

  29. X.F. Lei, C. Chen, X. Li et al., Characterization and photocatalytic performance of La and C co-doped anatase TiO2 for photocatalytic reduction of Cr(VI). Sep. Purif. Technol. 161, 8–15 (2016)

    Article  Google Scholar 

  30. Q.J. Zhang, Y. Fu, Y.F. Wu et al., Lanthanum-doped TiO2 nanosheet film with highly reactive {001} facets and its enhanced photocatalytic activity. Eur. J. Inorg. Chem. 11, 1706–1711 (2016)

    Article  Google Scholar 

  31. M. Meksi, A. Turki, H. Kochkar et al., The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl. Catal. B 181, 651–660 (2016)

    Article  Google Scholar 

  32. M.G. Alalm, S. Ookawara, D. Fukushi et al., Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin. J. Hazard. Mater. 302, 225–231 (2016)

    Article  Google Scholar 

  33. T. Surendar, S. Kumar, V. Shanker, Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol-gel method. Phys. Chem. Chem. Phys. 16, 728–735 (2014)

    Article  Google Scholar 

  34. B. Wang, G.X. Zhang, Z.M. Sun et al., A comparative study about the influence of metal ions (Ce, La and V) doping on the solar-light-induced photodegradation toward Rhodamine B. J. Environ. Chem. Eng. 3, 1444–1451 (2015)

    Article  Google Scholar 

  35. U. Sulaeman, S. Yin, T. Sato, Synthesis of La/N Co-doped SrTiO3 using polymerized complex method for visible light photocatalysis. Adv. Nanopart. 2, 6–10 (2013)

    Article  Google Scholar 

  36. X. Zhou, X.N. Zhang, X.B. Feng et al., Preparation of a La/N co-doped TiO2 film electrode with visible light response and its photoelectrocatalytic activity on a Ni substrate. Dyes Pigments 125, 375–383 (2016)

    Article  Google Scholar 

  37. S. Suwanboon, P. Amornpitoksuk, A. Sukolrat et al., Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram. Int. 39, 2811–2819 (2013)

    Article  Google Scholar 

  38. J.J. Li, B. Li, J.J. Li et al., Visible-light-driven photocatalyst of La-N-codoped TiO2 nano-photocatalyst: Fabrication and its enhanced photocatalytic performance and mechanism. J. Ind. Eng. Chem. 25, 16–21 (2015)

    Article  Google Scholar 

  39. A.N. Okte, Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Appl. Catal. A 475, 27–39 (2014)

    Article  Google Scholar 

  40. M. Shakir, M. Faraz, M. Asif Sherwani et al., Photocatalytic degradation of the Paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin. 176, 159–167 (2016)

    Article  Google Scholar 

  41. T.F. Zhou, J.C. Hu, J.L. Li, Er3+ doped bismuth molybdate nanosheets with exposed {010} facets and enhanced photocatalytic performance. Appl. Catal. B 110, 221–230 (2011)

    Article  Google Scholar 

  42. AJE Rettie, K. Klavetter, J.F. Lin et al., Improved visible light harvesting of WO3 by incorporation of sulfur or iodine: a tale of two impurities. Chem. Mater. 26, 1670–1677 (2014)

    Article  Google Scholar 

  43. M.C. Biesinger, B.P. Payne, A.P. Grosvenor et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)

    Article  Google Scholar 

  44. Y. Zheng, G. Chen, Y.G. Yu et al., Synthesis of carbon doped WO3·0.33H2O hierarchical photocatalyst with improved photocatalytic activity. Appl. Surf. Sci. 362, 182–190 (2016)

    Article  Google Scholar 

  45. L. Yu, X.F. Yang, J. He et ., A fluorine free method to synthesize nitrogen and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets for enhancing visible-light photocatalytic activity. J. Mol. Catal. A 399, 42–47 (2015)

    Article  Google Scholar 

  46. L. Yu, X.F. Yang, J. He et al., One-step hydrothermal method to prepare nitrogen and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets and study on their photocatalytic activities in visible light. J. Alloys Compd. 637, 308–314 (2015)

    Article  Google Scholar 

  47. L.Y. Li, H.R. Shi, L. Chen et al., Evaluation of La-doped mesoporous bioactive glass as adsorbent and photocatalyst for removal of methylene blue from aqueous solution. Int. J. Photoenergy 2015, 1–11 (2015)

    Google Scholar 

  48. X. Lan, L.Z. Wang, B.Y. Zhang et al., Preparation of lanthanum and boron co-doped TiO2 by modified sol-gel method and study their photocatalytic activity. Catal. Today 224, 163–170 (2014)

    Article  Google Scholar 

  49. D.D. Liu, Z.S. Wu, F. Tian et al., Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J. Alloys Compd. 676, 489–498 (2016)

    Article  Google Scholar 

  50. H.H. Chen, X.Q. Xiong, L.L. Hao et al., Improved visible light photocatalytic activity of WO3 through CuWO4 for phenol degradation. Appl. Surf. Sci. 389, 491–495 (2016)

    Article  Google Scholar 

  51. X.C. Luo, G.Q. Zhu, J.H. Peng et al., Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation. Appl. Surf. Sci. 351, 260–269 (2015)

    Article  Google Scholar 

  52. J.F. Liu, H.Y. Li, L.L. Zong et al., Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles. J. Nanoparticle Res. 17, 114, (2015)

    Article  Google Scholar 

  53. Z.W. Chen, Y.P. Wu, X. Wang et al., Ferromagnetism and enhanced photocatalytic activity in Nd doped BiFeO3 nanopowders. J. Mater. Sci. 26, 9929–9940 (2015)

    Google Scholar 

  54. C.W. Tan, G.Q. Zhu, M. Hojamberdiev et al., Adsorption and enhanced photocatalytic activity of the {0001} faceted Sm-doped ZnIn2S4 microspheres. J. Hazard. Mater. 278, 572–583 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 21507014, 21663006), Nature Science Foundation of Guangxi Province (No. 2014GXNSFBA118036), Program for Science and Technology Development Plan of Nanning (No. 20163146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Li or Lihui Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhang, P., Li, B. et al. Preparation, characterization and photocatalytic properties of La/WO3 composites. J Mater Sci: Mater Electron 28, 12158–12167 (2017). https://doi.org/10.1007/s10854-017-7030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7030-3

Keywords

Navigation