Arabic gum as green agent for ZnO nanoparticles synthesis: properties, mechanism and antibacterial activity

  • Muneer M. Ba-Abbad
  • Mohd S. Takriff
  • Abdelbaki Benamor
  • Ebrahim Mahmoudi
  • Abdul Wahab Mohammad


The size and morphology of ZnO nanoparticles (ZnO NPs) were controlled in the presence of the natural and green agent, Arabic gum. Lower amounts of Arabic gum showed a greater effect on the size and morphology as well as on the properties of ZnO NPs prepared by a sol–gel method. The hexagonal wurtzite crystal structure was found for all samples ZnO NPs with no other phase for impurities. The size of the spherically shaped ZnO NPs decreased with an increase in the amount of Arabic gum, up to an optimal 1.50 wt%. The smaller size of ZnO NPs of 16 nm was obtained with the optimal amount of Arabic gum, compared to 32 nm produced without Arabic gum. These results were attributed to the ready reaction between Arabic gum molecules and zinc ions within the nucleation and growth processes of ZnO NPs. The optical properties of ZnO NPs, with a band gap of 3.4 eV and enhanced intensity of blue emission, were the result of the smaller size of ZnO at the optimal amount of Arabic gum. According to the experimental results, a mechanism to elucidate the formation of ZnO NPs was proposed and explained. The antibacterial activity was tested against Escherichia coli against which higher activity, explained by smaller size of the ZnO NPs, was obtained.


Inhibition Zone Zinc Nitrate Transmission Electron Microscopy Result Oxalic Acid Solution Zinc Nitrate Hexahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper was made possible by NPRP Grant # [5-1425-2-607] from the Qatar National Research Fund (a member of Qatar Foundation) and Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia under project PKT-6/2012, iconic-2014-004. The statements made herein are solely the responsibility of the authors. One of the authors (Muneer M. Ba-Abbad) is grateful to Hadhramout University of Science &Technology, Yemen for its financial support for his PhD study. The authors would like to thank the Centre for Research and Instrumentation Management, UKM (CRIM) for XRD, TEM and PL analyses.


  1. 1.
    R.S. Shaikh, R.R. Rakh, L.S. Ravangave, Int. Res. J. Sci. Eng. 4, 31 (2016)Google Scholar
  2. 2.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, J. Alloys Compd. 550, 63 (2013)CrossRefGoogle Scholar
  3. 3.
    E. Maryanti, D. Damayanti, I. Gustian, S. Yudha, Mater. Lett. 118, 96 (2014)CrossRefGoogle Scholar
  4. 4.
    M.M. Ba-Abbad, P.V. Chai, M.S. Takriff, A. Benamor, A.W. Mohammad, Mater. Des. 86, 948 (2015)CrossRefGoogle Scholar
  5. 5.
    M.M. Ba-Abbad, M.S. Takriff, A.W. Mohammad, Res. Chem. Intermed. 42, 5219 (2016)CrossRefGoogle Scholar
  6. 6.
    A.K. Zak, W.A. Majid, M. Darroudi, R. Yousefi, Mater. Lett. 65, 70 (2011)CrossRefGoogle Scholar
  7. 7.
    K.S. Babu, R. Reddy, C. Sujatha, K.V. Reddy, Mater. Lett. 99, 97 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Lee, S. Park, H. Park, J. Lee, H. Kim, Y. Chung, J. Electroceram. 22, 100 (2009)CrossRefGoogle Scholar
  9. 9.
    A.M. Pourrahimi, D. Liu, V. Strom, M.S. Hedenqvist, R.T. Olssona, W.U. Gedde, J. Mater. Chem. A 3, 17190 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Davar, A. Majedi, A. Mirzaei, J. Am. Ceram. Soc. 98, 1739 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N.H. Kaus, L.C. Ann, S.K. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7, 219 (2015)CrossRefGoogle Scholar
  12. 12.
    J.T. Seil, T.J. Webster, Int. J. Nanomed. 7, 2767 (2012)Google Scholar
  13. 13.
    J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Exp. Opin. Drug Deliv. 7, 1063 (2010)CrossRefGoogle Scholar
  14. 14.
    Q. Bao, D. Zhang, P. Qi, J. Colloid Interface Sci. 360, 463 (2011)CrossRefGoogle Scholar
  15. 15.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.A. Al-Amiery, A.B. Mohamad, S.M. Takriff, Int. J. Phys. Sci. 7, 48 (2012)Google Scholar
  16. 16.
    A. Mollahosseini, A. Rahimpour, M. Jahamshahi, M. Peyravi, M. Khavarpour, Desalination 306, 41 (2012)CrossRefGoogle Scholar
  17. 17.
    C.B. Ong, A.W. Mohammad, R. Rohania, M.M. Ba-Abbad, N.H. Hairom, Process Saf. Environ. Prot. 104, 549 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.L. Zhang, Y. Yang, J.H. Zhao, R.Q. Tan, J. Sol–Gel Sci. Technol. 51, 198 (2009)CrossRefGoogle Scholar
  19. 19.
    M. B. Moreno-Trejo, M. Sánchez-Domínguez, Materials 9, 817 (2016)CrossRefGoogle Scholar
  20. 20.
    Y.L. López-Franco, R.E. Córdova-Moreno, F.M. Goycoolea, M.A. Valdez, J. Juárez-Onofre, J. Lizardi-Mendoza, Food Hydrocoll. 26, 159 (2012)CrossRefGoogle Scholar
  21. 21.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Chemosphere 91, 1604 (2013)CrossRefGoogle Scholar
  22. 22.
    C.H. Hung, W.T. Whang, Mater. Chem. Phys. 82, 705 (2003)CrossRefGoogle Scholar
  23. 23.
    Y.T. Chung, M.M. Ba-Abbad, A.W. Mohammad, A. Benamor, Desalin. Water Treat. 57, 7801 (2016)CrossRefGoogle Scholar
  24. 24.
    T.P. Rao, M.C.S. Kumar, N.S. Hussain, J. Alloys Compd. 541, 495 (2012)CrossRefGoogle Scholar
  25. 25.
    H.B. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, W.P. Cai, Adv. Funct. Mater. 20, 561 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Wang, S. Dong, X. Zhou, X. Hu, Y. Chang, Physica E 44, 307 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Wang, X. Zhao, L. Duan, F. Wang, H. Niu, W. Guo, A. Ali, Mater. Sci. Semicond. Process. 29, 372 (2015)CrossRefGoogle Scholar
  28. 28.
    A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 87, 454 (2000)CrossRefGoogle Scholar
  29. 29.
    M. Makkar, H.S. Bhatti, K. Singh, J. Mater. Sci. 25, 4822 (2014)Google Scholar
  30. 30.
    M. Sulochana, C.S. Vani, D.K. Devi, N.S. Naidu, B. Sreedhar, Am. J. Mater. Sci. 3, 169 (2013)Google Scholar
  31. 31.
    M.M. Ba-Abbad, M.S. Takriff, A. Benamor, A.W. Mohammad, Adv. Powder Technol. 27, 2439 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Thirumavalavan, K.L. Huang, J.F. Lee, Colloids Surf. A 417, 154 (2013)CrossRefGoogle Scholar
  33. 33.
    K.A. Juby, C. Dwivedi, M. Kumar, S. Kota, H.S. Misra, P.N. Bajaj, Carbohydr. Polym. 89, 906 (2012)CrossRefGoogle Scholar
  34. 34.
    N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 035004 (2008)CrossRefGoogle Scholar
  35. 35.
    M.D. Blake, P. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A. Jacoby, Sep. Purif. Methods 28, 1 (1999)CrossRefGoogle Scholar
  36. 36.
    J. Sawai, J. Microbial. Method 54, 177 (2003)CrossRefGoogle Scholar
  37. 37.
    M.M. Ba-Abbad, M.S. Takriff, A.A.H. Kadhum, A.B. Mohamad, A. Benamor, A.W. Mohammad, Environ. Sci. Pollut. Res. 24, 2804 (2017)CrossRefGoogle Scholar
  38. 38.
    O. Yamamoto, J. Inorg. Mater. 3, 643 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Muneer M. Ba-Abbad
    • 1
    • 2
    • 4
  • Mohd S. Takriff
    • 1
    • 2
  • Abdelbaki Benamor
    • 3
  • Ebrahim Mahmoudi
    • 1
  • Abdul Wahab Mohammad
    • 1
    • 2
  1. 1.Department of Chemical and Process Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Research Centre for Sustainable Process Technology, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Gas Processing CentreQatar UniversityDohaQatar
  4. 4.Department of Chemical Engineering, Faculty of Engineering and PetroleumHadhramout University of Science & TechnologyMukallaYemen

Personalised recommendations