Skip to main content
Log in

A nanostructured Cr2O3/WO3 p–n junction sensor for highly sensitive detection of butanone

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The highly sensitive detection of butanone was achieved by the WO3 nanosheets-Cr2O3 nanoparticles (denoted as “Cr2O3/WO3”) p–n junction nanocomposite which was synthesized via a facile two-step hydrothermal process. The structure, morphology and compositions of the as-synthesized Cr2O3/WO3 nanocomposite were characterized by XRD, SEM, TEM, HRTEM, XPS, and BET. In the gas sensing test, the response of the Cr2O3/WO3 nanocomposite (Cr/W = 1:40, 1:10) to 100 ppm butanone at 180 °C can reach to 40.51 and 38.26, respectively, which was much higher than that of independent WO3 nanosheets (10.7). Moreover, the Cr2O3/WO3 nanocomposite sensor shows rapid response (ca. 9 s)/recovery (ca. 15 s) time to 5 ppm butanone. In this work, a possible gas sensing mechanism of Cr2O3/WO3 nanocomposite sensor was also discussed based on p–n junction. The superior gas sensor properties demonstrate that Cr2O3/WO3 nanocomposite is a potential material for monitoring butanone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.B.N. Thompson, Implications for cognitive rehabilitation and brain injury from exposure to Methyl Ethyl Ketone (MEK): a review. J. Cogn. Rehabil. 28, 4–14 (2010)

    Google Scholar 

  2. T. Ligor, J. Szeliga, M. Jackowski, B. Buszewski, Preliminary study of volatile organic compounds from breath and stomach tissue by means of solid phase microextraction and gas chromatography-mass spectrometry. J. Breath Res. 1, 016001 (2007)

    Article  Google Scholar 

  3. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996)

    Article  Google Scholar 

  4. L.Y. Yu, M.R. Wu, Y. Gou, S.R. Liu et al., Rapid determination of 2-butanone, 2-pyrrolidone and N-methyl pyrrolidone in leather by UPLC. J. Soc. Leather Technol. Chem. 98, 182–184 (2014)

    Google Scholar 

  5. L. Rahman, A. Shah, S.K. Lunsford et al., Monitoring of 2-butanone using a Ag–Cu bimetallic alloy nanoscale electrochemical sensor. RSC Adv. 5, 44427–44434 (2015)

    Article  Google Scholar 

  6. Y.X. Zhang, G. Gao, Q.R. Qian, D.X. Cui et al., Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res. Lett. 7, 475 (2012)

    Article  Google Scholar 

  7. Y.Y. Weng, L.C. Zhang, W. Zhu, Y. Lv, One-step facile synthesis of coral-like Zn-doped SnO2 and its cataluminescence sensing of 2-butanone. J. Mater. Chem. A 3, 7132–7138 (2015)

    Article  Google Scholar 

  8. Z.W. Jiang, Z. Guo, B. Sun, Y. Jia, M.Q. Li, J.H. Liu, Highly sensitive and selective butanone sensors based on cerium-doped SnO2 thin films. Sens. Actuators B 145, 667–673 (2010)

    Article  Google Scholar 

  9. Y.J. Sun, Z.H. Wei, W.D. Zhang, P.W. Li, K. Lian, J. Hu, Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J. Mater. Sci. 51, 1428–1436 (2016)

    Article  Google Scholar 

  10. N. Song, H.Q. Fan, H.L. Tian, PVP assisted in situ synthesis of functionalized graphene/ZnO (FGZnO) nanohybrids with enhanced gas-sensing property. J. Mater. Sci. 50, 2229–2238 (2015)

    Article  Google Scholar 

  11. C.W. Zou, F. Liang, S.W. Xue, Synthesis and oxygen vacancy related NO2 gas sensing properties of ZnO:Co nanorods arrays gown by a hydrothermal method. Appl. Surf. Sci. 353, 1061–1069 (2015)

    Article  Google Scholar 

  12. F.D. Qu, Y.F. Wang, Y. Wang, J.R. Zhou, S.P. Ruan, Template-free synthesis of Cu2O–Co3O4 core-shell composites and their application in gas sensing. RSC Adv. 4, 24211–24216 (2014)

    Article  Google Scholar 

  13. F.D. Qu, J. Liu, Y. Wang, S.P. Wen, Y. Chen, X. Li, S.P. Ruan, Hierarchical Fe3O4@Co3O4 core–shell microspheres: preparation and acetone sensing properties. Sens. Actuators B 199, 346–353 (2014)

    Article  Google Scholar 

  14. S.F. Shen, M.L. Xu, D.B. Lin, H.B. Pan, The growth of urchin-like Co3O4 directly on sensor substrate and its gas sensing properties. Appl. Surf. Sci. 396, 327–332 (2017)

    Article  Google Scholar 

  15. S. Yan, G.T. Zan, Q.S. Wu, An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers. Nano Res. 8, 3673–3686 (2015)

    Article  Google Scholar 

  16. C.B. Liu, X.S. Wang, F. Xie, L. Liu, S.P. Ruan, Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties. J. Mater. Sci. 27, 9870–9876 (2016)

    Google Scholar 

  17. L. You, X. He, D. Wang, P. Sun, Y.F. Sun, X.S. Liang, Y. Du, G.Y. Lu, Ultrasensitive and low operating temperature NO2 gas sensor using nanosheets assembled hierarchical WO3 hollow microspheres. Sens. Actuators B 173, 426–432 (2012)

    Article  Google Scholar 

  18. S.L. Bai, K.W. Zhang, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem. A 22, 12643–12650 (2012)

    Article  Google Scholar 

  19. Y. Li, W. Luo, N. Qin et al., Highly ordered mesoporous tungsten oxides with a lager pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed. 53, 9035–9040 (2014)

    Article  Google Scholar 

  20. Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, Z.G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2, 13602–13611 (2014)

    Article  Google Scholar 

  21. G. Wang, Y. Ji, X.R. Huang, X.Q. Yang, P.I. Gouma, M. Dudly, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)

    Article  Google Scholar 

  22. S.X. Cao, C. Zhao, T. Han, L.L. Peng, Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers. Mater. Lett. 169, 17–20 (2016)

    Article  Google Scholar 

  23. Z.S. Wang, M. Hu, Y.X. Qin, Solvothermal synthesis of WO3 nanocrystals with nanosheet and nanorod morphologies and the gas-sensing properties. Mater. Lett. 171, 146–149 (2016)

    Article  Google Scholar 

  24. J.H. Sun, X. Shu, Y.L. Tian, Z.F. Tong, S.L. Bai, R.X. Luo, D.Q. Li, A.F. Chen, Preparation of polypyrrole@WO3 hybrids with p–n heterojunction and sensing performance to triethylamine at room temperature. Sens. Actuators B 238, 510–517 (2017)

    Article  Google Scholar 

  25. Y.L. Wang, B. Zhang, J. Liu, Au-loaded mesoporous WO3: preparation and n-butanol sensing performances. Sens. Actuators B 236, 67–76 (2016)

    Article  Google Scholar 

  26. A.K. Nayak, R. Ghosh, S. Santra, P.A.K. Guha, D. Pradhan, Hierarchical nanostructured WO3–SnO2 for selective sensing of volatile organic compounds. Nanoscale 7, 12460–12473 (2015)

    Article  Google Scholar 

  27. P. Gao, H.M. Ji, Y.G. Zhou, X.L. Li, Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method. Thin Solid Films 520, 3100–3106 (2012)

    Article  Google Scholar 

  28. Y.J. Li, F. Li, C. Li et al, The preparation of Cr2O3@WO3 hierarchical nanostructures and their application in the detection of volatile organic compounds (VOCs), RSC Adv. 5, 61528–61534 (2015)

    Article  Google Scholar 

  29. Y.B. Shen, X.X. Chen, W. Wang et al., Complexing surfactants-mediated hydrothermal synthesis of WO3 microspheres for gas sensing applications. Mater. Lett. 163, 150–153 (2016)

    Article  Google Scholar 

  30. H. Ma, Y.M. Xu, Z.M. Rong, X.L. Cheng, S. Gao, X.F. Zhang, H. Zhao, L.H. Huo, Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres. Sens. Actuators B 174, 325–331 (2012)

    Article  Google Scholar 

  31. H.Z. Shen, I.R. Ie, C.S. Yuan, C.H. Huang, The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures. Appl. Catal. B 195, 90–103 (2016)

    Article  Google Scholar 

  32. G.X. Zhao, T. Wen, J. Zhang, J.X. Li, H.L. Dong, X.K. Wang, Y.G. Guo, W.P. Hu, Two-dimensional Cr2O3 and interconnected graphene-Cr2O3 nanosheets: synthesis and their application in lithium storage. J. Mater. Chem. A 2, 944–948 (2014)

    Article  Google Scholar 

  33. H. Meixner, U. Lampe, Metal oxide sensors. Sens. Actuators B 33, 198–202 (1996)

    Article  Google Scholar 

  34. M. Righettoni, A. Tricoli, S.E. Pratsinis, Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)

    Article  Google Scholar 

  35. D.L. Chen, X.X. Hou, T. Li et al., Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens. Actuators B 153(2011), 373–381 (2011)

    Article  Google Scholar 

  36. P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci. 40, 4383–4385 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding provided by the National Natural Science Foundation of China (Nos. 21303118 and 41274191), the Doctor Project for Young Teachers of Ministry of Education (No. 20130032120003), the Seed Foundation of Tianjin University (No. 1501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhurui Shen or Qiang Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xu, M., Shen, Z. et al. A nanostructured Cr2O3/WO3 p–n junction sensor for highly sensitive detection of butanone. J Mater Sci: Mater Electron 28, 12056–12062 (2017). https://doi.org/10.1007/s10854-017-7017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7017-0

Keywords

Navigation