Skip to main content
Log in

Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aims at improving the performance of vertical organic field effect transistor (VOFET) by synthesizing the different morphology of dielectric layer; porous and non-porous to be used in the fabrication of 3-dimensional (3D) VOFET. In this work, poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] 75/25 have been used as a dielectric layer in the fabrication of 3D VOFET. To produce the 3D VOFET, porous alumina template is applied as to allow the replicating process between the template and P(VDF-TrFE) to occur. It is found that the replicating process has generated the porous structure of P(VDF-TrFE). Two types of VOFET, one with the integration of porous and one without the porous have been fabricated and characterized. VOFET without the porous has the current of 3.5 × 10−4 A obtained at drain-source voltage (VDS) of 25 V with the turn-on voltage of 10 V. Meanwhile, the VOFET integrated with porous recorded a better current of 2.0 × 10−3 A at VDS of 25 V with the turn-on voltage of 7 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Article  Google Scholar 

  2. T. Minami, T. Sato, T. Minamiki, K. Fukuda, D. Kumaki, S. Tokito, A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 74, 45–48 (2015)

    Article  Google Scholar 

  3. M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)

    Article  Google Scholar 

  4. B. Geffroy, P. Le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)

    Article  Google Scholar 

  5. Y. Sun, Y. Liu, D. Zhu, Advances in organic field-effect transistors. J. Mater. Chem. 15, 53–65 (2005)

    Article  Google Scholar 

  6. C. Rost, S. Karg, W. Riess, M.A. Loi, M. Murgia, M. Muccini, Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004)

    Article  Google Scholar 

  7. J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 237 (2008)

    Google Scholar 

  8. F. So, Organic electronics: materials, processing, devices and applications (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  9. A.J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95, 302 (2009)

    Article  Google Scholar 

  10. C. Bartic, H. Jansen, A. Campitelli, S. Borghs, Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65–72 (2002)

    Article  Google Scholar 

  11. C. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. Shaw, Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999)

    Article  Google Scholar 

  12. C.S. Kim, S.J. Jo, J.B. Kim, S.Y. Ryu, J.H. Noh, H.K. Baik, S.J. Lee, Y.S. Kim, Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors. J. Appl. Phys. 102, 126101 (2007)

    Article  Google Scholar 

  13. M. Latour, R. Moreira, Submillimetric study of a poly(vinylidene fluoride-trifluorethylene) copolymer under electrical and mechanical stresses. Electrical Insulation & Dielectric Phenomena, 1986. Annual Report 1986. Conference on, IEEE, 1986, pp. 345–350.

  14. Y. Nakagawa, Y. Hashizume, T. Nakajima, S. Okamura, Ferroelectric properties of vinylidene fluoride/tetrafluoroethylene copolymer thin films consisting of needle-like crystals. Jpn. J. Appl. Phys. 55, 051601 (2016)

    Article  Google Scholar 

  15. T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. Multinatl. J. 18, 143–211 (1989)

    Article  Google Scholar 

  16. Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011)

    Article  Google Scholar 

  17. G.A. Salvatore, D. Bouvet, I. Stolitchnov, N. Setter, A.M. Ionescu, Low voltage ferroelectric FET with sub-100nm copolymer P (VDF-TrFE) gate dielectric for non-volatile 1 T memory, Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European, IEEE, 2008, pp. 162–165

  18. N. Weber, Y.-S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 6, 3550–3556 (2010)

    Article  Google Scholar 

  19. R.I. Mahdi, W. Gan, W. Majid, Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators, Sensors 14 (2014) 19115–19127

    Article  Google Scholar 

  20. H. Xu, G. Shanthi, V. Bharti, Q. Zhang, T. Ramotowski, Structural, conformational, and polarization changes of poly(vinylidene fluoride-trifluoroethylene) copolymer induced by high-energy electron irradiation. Macromolecules 33, 4125–4131 (2000)

    Article  Google Scholar 

  21. Z. Hu, M. Tian, B. Nysten, A.M. Jonas, Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater. 8, 62–67 (2009)

    Article  Google Scholar 

  22. D. Mao, B.E. Gnade, M.A. Quevedo-Lopez, Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer (INTECH Open Access Publisher, Rijeka, 2011)

    Book  Google Scholar 

  23. X. Wang, G.-R. Han, Fabrication and characterization of anodic aluminum oxide template. Microelectron. Eng. 66, 166–170 (2003)

    Article  Google Scholar 

  24. M.P. Houng, W.L. Lu, T.H. Yang, K.W. Lee, Characterization of the nanoporous template using anodic alumina method, J. Nanomater. (2014). doi:10.1155/2014/130716

    Google Scholar 

  25. G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683–3691 (2009)

    Article  Google Scholar 

  26. M.Z.M. Halizan, A.H.A. Makinudin, A. Supangat, Infiltration of VOPcPhO into porous alumina template grown by in situ method. RSC Adv. 6, 37574–37582 (2016)

    Article  Google Scholar 

  27. C.M. Costa, L. Rodrigues, V. Sencadas, M.M. Silva, S. Lanceros-Méndez, Effect of the microstructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications. Solid State Ion. 217, 19–26 (2012)

    Article  Google Scholar 

  28. J.-H. Lim, A. Rotaru, S.-G. Min, L. Malkinski, J.B. Wiley, Synthesis of mild–hard AAO templates for studying magnetic interactions between metal nanowires. J. Mater. Chem. 20, 9246–9252 (2010)

    Article  Google Scholar 

  29. M.S. Sander, L.S. Tan, Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates. Adv. Funct. Mater. 13, 393–397 (2003)

    Article  Google Scholar 

  30. X. Han, W. Shen, Improved two-step anodization technique for ordered porous anodic aluminum membranes. J. Electroanal. Chem. 655, 56–64 (2011)

    Article  Google Scholar 

  31. X. Zhao, S.-K. Seo, U.-J. Lee, K.-H. Lee, Controlled electrochemical dissolution of anodic aluminum oxide for preparation of open-through pore structures. J. Electrochem. Soc. 154, C553–C557 (2007)

    Article  Google Scholar 

  32. N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)

    Article  Google Scholar 

  33. A.J. Ben-Sasson, N. Tessler, Patterned electrode vertical field effect transistor: theory and experiment. J. Appl. Phys. 110, 044501 (2011)

    Article  Google Scholar 

  34. K. Kudo, M. Iizuka, S. Kuniyoshi, K. Tanaka, Device characteristics of lateral and vertical type organic field effect transistors. Thin Solid Films 393, 362–367 (2001)

    Article  Google Scholar 

  35. A.J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl. Mater. Interfaces 7, 2149–2152 (2015)

    Article  Google Scholar 

  36. A.H.A. Makinudin, M.S. Fakir, A. Supangat, Metal phthalocyanine: fullerene composite nanotubes via templating method for enhanced properties. Nanoscale Res. Lett. 10, 1–8 (2015)

    Article  Google Scholar 

  37. G. Horowitz, Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)

    Article  Google Scholar 

  38. X. Chen, W. Ou-Yang, M. Weis, D. Taguchi, T. Manaka, M. Iwamoto, Reduction of hysteresis in organic field-effect transistor by ferroelectric gate dielectric. Jpn. J. Appl. Phys. 49, 021601 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Malaya for the project funding under the University Malaya Research Grant (RP026C-15AFR) and the Ministry of Education Malaysia for the project funding under the Fundamental Research Grant Scheme (FP046-2015A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzuliani Supangat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Halizan, M.Z., Roslan, N.A., Abdullah, S.M. et al. Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer. J Mater Sci: Mater Electron 28, 11961–11968 (2017). https://doi.org/10.1007/s10854-017-7005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7005-4

Keywords

Navigation