Skip to main content
Log in

Effects of screen printing and sintering processing of front side silver grid line on the electrical performances of multi-crystalline silicon solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the influence of screen-printing technology, sintering temperature, and the belt speed of sintering furnace on electrical properties of solar cells were researched. It is found that the morphology and aspect ratio of grid line are strongly influenced by printing parameters including the snap-off distance, the squeegee pressure and the squeegee speed. A number of comparative experiments showed that the electrical performance of solar cells was the best when the snap-off distance is 1200 µm, the squeegee pressure is 75 N, and the squeegee speed is 220 mm/s. Meanwhile, the surface morphology of the front electrode grid line prepared with the above optimum technology parameter is smooth and dense, and possesses good aspect ratio. To better understand the contact quality, the influence of sintering peak temperature on the electrical performance of solar cells was deeply studied. The results show that when the peak temperature was 900 °C, the series resistance (Rs) possesses the minimum value and the open circuit voltage (Voc), fill factor (FF), and conversion efficiency (Eff) all possess the maximum values. The effect of belt speed of sintering furnace on the electrical performance of the cells was also investigated. It is found that the electrical performance parameters were the optimal at the belt speed of 245 in/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Yadav, K. Pandey, B. Tripathi, C.M. Kumar, S.K. Srivastava, P.K. Singh, M. Kumar, Sol. Energy 122, 1–10 (2015)

    Article  Google Scholar 

  2. S.B. Cho, K.K. Hong, B.M. Chung, J.Y. Huh, in 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, CA, USA, 2009, pp 766–769

  3. Z.H. Yang, X.F. Li, S.L. Wu, P.Q. Gao, J.H. Ye, Opt. Lett. 40(6), 1077–1080 (2015)

    Article  Google Scholar 

  4. R.X. Li, H.Y. Wang, Y.P. Tai, J.T. Bai, H. Wang, RSC Adv. 5, 92515–92521 (2016)

    Google Scholar 

  5. B. Sopori, V. Mehta, P. Rupnowski, D. Domine, M. Romero, H. Moutinho, B. To, R. Reedy, M. Al-Jassim, A. Shaikh, in 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007, p 841

  6. S.B. Rane, T. Seth, G.J. Phatak, D.P. Amalnerkar, M. Ghatpande, J. Mater. Sci. 15, 103–106 (2004)

    Google Scholar 

  7. X.D. Lu, Y. Zhao, Z.L. Wang, J.J. Zhang, Y. Song, Sol. Energy 136, 333–341 (2016)

    Article  Google Scholar 

  8. J. Qin, W.J. Zhang, S.X. Bai, Z.F. Liu, Appl. Surf. Sci. 376, 52–61 (2016)

    Article  Google Scholar 

  9. Y. Yang, P.P. Altermatt, W.H. Zhu, X.Q. Liang, H. Shen, Prog. Photovolt. 20, 490–500 (2012)

    Article  Google Scholar 

  10. P. Magnone, G. Napoletano, R.D. Rose, F. Crupi, D. Tonini, G. Cellere, M. Galiazzo, E. Sangiorgi, C. Fiegna, Energy Proc. 27, 191–196 (2012)

    Article  Google Scholar 

  11. X. Bao, N.C. Lee, R.B. Raj, K.P. Rangan, A. Maria, Solder. Surf. Mt. Technol. 10, 26–35 (1998)

    Article  Google Scholar 

  12. J. Pan, G. L. Tonkay, A. Quintero, W. P. Ave, J. Electron. Manuf. 9, 203–213 (1999)

    Article  Google Scholar 

  13. R. Durairaj, S. Ramesh, S. Mallik, A. Seman, N. Ekere, Mater. Des. 30, 3812–3818 (2009)

    Article  Google Scholar 

  14. H.W. Lin, C. Chang, W.H. Wu, M. Ger, J. Mater. Process. Technol. 197, 284–291 (2008)

    Article  Google Scholar 

  15. S.L. Wu, W. Wang, L. Li, D. Yu, L. Huang, W.C. Liu, X.S. Wu, F.M. Zhang, RSC Adv. 4, 24384–24388 (2014)

    Article  Google Scholar 

  16. M.M. Hilali, K. Nakayashiki, C. Khadilkar, R.C. Reedy, A. Rohatgi, A. Shaikh, S. Kim, S. Sridharan, J. Electrochem. Soc. 153, A5–A11 (2006)

    Article  Google Scholar 

  17. P. Kumar, M. Pfeffer, B. Willsch, O. Eib, Sol. Energy Mater. Sol. Cells 145, 358–367 (2016)

    Article  Google Scholar 

  18. J.C. Zhou, Xing Chen, Y.Y. Wang, X.B. Zhao, Mater. Lett. 169, 197–199 (2016)

    Article  Google Scholar 

  19. Y.P. Tai, G.J. Zheng, H.Y. Wang, H. Wang, J.T. Bai, RSC Adv. 5, 92515–92521 (2015)

    Article  Google Scholar 

  20. G. J. Zheng, Y. P. Tai, H. Wang, J. T. Bai, J. Mater. Sci. 25, 3779–3786 (2014)

    Google Scholar 

  21. J.L. Zhang, Y.B. Cui, H. Wang, J. Renew. Sustain. Energy 5, 023117-1-12 (2013)

    Google Scholar 

  22. H.Y. Wang, Y.P. Tai, R.X. Li, H. Wang, J.T. Bai, RSC Adv. 6, 28289–28297 (2016)

    Article  Google Scholar 

  23. L. Liang, Z.G. Li, L.K. Cheng, N. Takeda, R.J.S. Young, A. Carroll, IEEE J. Photovolt. 4, 549–553 (2014)

    Article  Google Scholar 

  24. L. Liang, Z.G. Li, L.K. Cheng, N. Takeda, A.F. Carroll, J. Appl. Phys. 117, 215102 (2015)

    Article  Google Scholar 

  25. Z.G. Li, L. Liang, L.K. Cheng, J. Appl. Phys. 105, 66102 (2009)

    Article  Google Scholar 

  26. L.K. Cheng, L. Liang, Z.G. Li, in 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, CA, USA, 2009, p 2344

  27. Z.G. Li, L. Liang, A.S. Ionkin, B.M. Fish, M.E. Lewittes, L.K. Cheng, K.R. Mikeska, J. Appl. Phys. 110, 074304 (2011)

    Article  Google Scholar 

  28. M. Eberstein, H. Falk-Windisch, M. Peschel, J. Schilm, T. Seuthe, M. Enzel, C. Kretzschmar, U. Partsch, Energy Proc. 27, 522–530 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports of the National Hi-Tech Research and Development Program (863) Key Project of China (Nos. 2012AA050301-SQ2011GX01D01292), Key Project of Industrial Science and Technology of Shaanxi Province (Nos. 2016GY-090 and 2016GY-196), and Xi’an Industrial Technology Innovation Project-technology transfer promoting program (Nos. CXY1421, CX1242, and CXY1511-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Jintao Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ma, S., Zhang, M. et al. Effects of screen printing and sintering processing of front side silver grid line on the electrical performances of multi-crystalline silicon solar cells. J Mater Sci: Mater Electron 28, 11934–11949 (2017). https://doi.org/10.1007/s10854-017-7003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7003-6

Navigation