Blue luminescence from hydrothermal ZnO nanorods based PVA nanofibers

  • M. Hamzah
  • R. M. Ndimba
  • M. KhenfouchEmail author
  • V. V. Srinivasu


It is universally known that many polymers exhibit strong photoluminescence in the UV–Visible and near infrared range. In addition, zinc oxide (ZnO) is well knows as a promising strong luminescent material. In this sense, this work reports on the preparation and characterization of nanofibers based on zinc oxide nanorods embedding polyvinyl alcohol (PVA) for blue light emission. The interaction between both compounds was systematically investigated. The absorbance intensities of both PVA and ZnO/PVA composite nanofibers have a maximum absorbance located at 279 nm and a shoulder like band around 231 nm. The photoluminescence results show that under an excitation of 360 nm wavelength which is matching with PVA, the emission from ZnO was comparable to the emission of PVA. In addition, under an excitation of 325 nm, a remarkable blue-shift in the emission of ZnO was observed. Hence, this work offers a reference in ZnO emission conversion in a nanofibrous media.


Composite Nanofibers Ionize Oxygen Vacancy Blue Light Emission Zinc Oxide Nanorods Polariton Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Special thanks to Unisa Research Chair in Superconductivity Technology and Africa Graphene Center.


  1. 1.
    T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds, Handbook of Conducting Polymers, 2nd edn. (Marcel Dekker, New York, 1998)Google Scholar
  2. 2.
    L. Akcelrud, Prog. Polym. Sci. 28, 875–962 (2003). doi: 10.1016/S0079-6700(02)00140-5 CrossRefGoogle Scholar
  3. 3.
    D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537–2574 (2000). doi: 10.1021/cr9801014 CrossRefGoogle Scholar
  4. 4.
    M. Mazur, Electrochem. Commun. 6, 400–403 (2004). doi: 10.1016/j.elecom.2004.02.011 CrossRefGoogle Scholar
  5. 5.
    L. Feng, C. Zhang, G. Gao, D. Cui, Nanoscale Res. Lett. 7, 276 (2012). doi: 10.1186/1556-276X-7-276 CrossRefGoogle Scholar
  6. 6.
    A. Pal, S. Shah, S. Devi, Colloids Surf. A 302, 483–487 (2007). doi: 10.1016/j.colsurfa.2007.03.032 CrossRefGoogle Scholar
  7. 7.
    M.J. Rosemary, T. Pradeep, Colloids Surf. A 268, 81–84 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Xie, R. Ye, H. Liu, Colloids Surf. A 279, 175–178 (2006). doi: 10.1016/j.colsurfa.2005.12.056 CrossRefGoogle Scholar
  9. 9.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005). doi: 10.1063/1.1992666 CrossRefGoogle Scholar
  10. 10.
    M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, D. Le Si Dang, Nanotechnology 20, 332001 (2009). doi: 10.1088/0957-4484/20/33/332001 CrossRefGoogle Scholar
  11. 11.
    R. Hernández, G. López, D. López, M. Vázquez, C. Mijangos, J. Mater. Res. 22, 2211–2216 (2007). doi: 10.1557/JMR.2007.0298 CrossRefGoogle Scholar
  12. 12.
    A.L. Alvarez, J. Tito, M.B. Vaello, P. Velasquez, R. Mallavia, M.M. Sánchez- Lopez, F. Fernández de Ávila, Thin Solid Films 433, 277–280 (2003). doi: 10.1016/S0040-6090(03)00348-1 CrossRefGoogle Scholar
  13. 13.
    L.C.-K. Liau, Y-H. Lin, J. Lumin. 181, 217–222 (2017). doi: 10.1016/j.jlumin.2016.08.067 CrossRefGoogle Scholar
  14. 14.
    T.K. Kundu, N. Karak, P. Barik, S. Saha, Int. J. Soft Comput. Eng. (IJSCE) 1, 19–24 (2011)Google Scholar
  15. 15.
    A. Pucci, M. Boccia, F. Galembeck, C. Alberto de Paula Leite, N. Tirelli, G. Ruggeri, React. Funct. Polym. 68, 1144–1151 (2008). doi: 10.1016/j.reactfunctpolym.2008.03.007 CrossRefGoogle Scholar
  16. 16.
    E.N. Suchkova, A.B. Pagubko, Russ. Phys. J. 51, 633–636 (2008) doi: 10.1007/s11182-008-9082-6 CrossRefGoogle Scholar
  17. 17.
    A.M. Shehap, Egypt J. Solids 31, 75–91 (2008)Google Scholar
  18. 18.
    G. Kaur, S.B. Rai, J. Phys. D 44, 425306 (2011). doi: 10.1088/0022-3727/44/42/425306 CrossRefGoogle Scholar
  19. 19.
    M. Khenfouch, M. Baïtoul, M. Maaza, Opt. Mater. 34, 1320–1326 (2012). doi: 10.1016/j.optmat.2012.02.005 CrossRefGoogle Scholar
  20. 20.
    M.F. Khan, A.H. Ansari, M. Hameedullah, E. Ahmad, F.M. Husain, Q. Zia, U. Baig, M.R. Zaheer, M.M. Alam, A.M. Khan, Z.A. AlOthman, I. Ahmad, G. Md. Ashraf, G. Aliev, Sci. Rep. 6, 276892016 (2016). doi: 10.1038/srep27689 Google Scholar
  21. 21.
    M.S. Meikhail, A.H. Oraby, M.O. Farea, A.M. Abdelghany, Res. J. Pharm. Biol. Chem. Sci. 5(6), 976 (2014)Google Scholar
  22. 22.
    H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron. 19, 26–36 (2013). doi: 10.18052/ CrossRefGoogle Scholar
  23. 23.
    Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceram. Proc. Res. 3, 146–149 (2002)Google Scholar
  24. 24.
    R.F. Silva, M.E.D. Zaniquelli, Colliods Surf. A 551, 198–200 (2002)Google Scholar
  25. 25.
    H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, H. Hongmei Cui, Vacuum 77, 57–62 (2004). doi: 10.1016/j.vacuum.2004.08.003 CrossRefGoogle Scholar
  26. 26.
    A. Becheri, M. Durr, P. Lo Nostro, J. Nanopart. Res. 10, 679–689 (2008). doi: 10.1007/s11051-007-9318-3 CrossRefGoogle Scholar
  27. 27.
    A.B. Djurišic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103107 (2006). doi: 10.1063/1.2182096 CrossRefGoogle Scholar
  28. 28.
    A. Van Dijken, E. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90, 123–128 (2000). doi: 10.1016/S0022-2313(99)00599-2 CrossRefGoogle Scholar
  29. 29.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403–405 (1996). doi: 10.1063/1.116699 CrossRefGoogle Scholar
  30. 30.
    A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715–1723 (2000). doi: 10.1021/jp993327z CrossRefGoogle Scholar
  31. 31.
    Z.H. Lim, Z.X. Chia, K. Moe, A.S.W. Wong, G.W. Ho, Sens. Actuators B 151, 121–126 (2010). doi: 10.1016/j.snb.2010.09.037 CrossRefGoogle Scholar
  32. 32.
    A. Kumar, S. Jeedigunta, I. Tarasov, S. Ostapenko, AZojomo 6, 1 (2010). doi: 10.2240/azojomo0287 Google Scholar
  33. 33.
    J.P. Richters, T. Voss, L. Wischmeier, I. Rückmann, J. Gutowski, Appl. Phys. Lett. 92, 011103 (2008). doi: 10.1063/1.2829598 CrossRefGoogle Scholar
  34. 34.
    K.W. Liu, R. Chen, G.Z. Xing, T. Wu, H.D. Sun, Appl. Phys. Lett. 96, 023111 (2010). doi: 10.1063/1.3291106 CrossRefGoogle Scholar
  35. 35.
    A.C. Ji, Q. Sun, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 102, 023602 (2009). doi: 10.1103/PhysRevLett.102.023602 CrossRefGoogle Scholar
  36. 36.
    C. Ji, X. C. Xie, W. M. Liu, Phys. Rev. Lett. 99, 183602 (2007). doi: 10.1103/PhysRevLett.99.183602 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Hamzah
    • 1
  • R. M. Ndimba
    • 2
  • M. Khenfouch
    • 3
    Email author
  • V. V. Srinivasu
    • 1
  1. 1.Unisa Research Chair in Superconductivity Technology, Department of Physics, College of Science, Engineering and Technology, Science CampusUniversity of South AfricaJohannesburgSouth Africa
  2. 2.iThemba LABS-National Research Foundation of South AfricaSomerset WestSouth Africa
  3. 3.Africa Graphene Center, Physics Department, Eureka Building, College of Science, Engineering and Technology, Science CampusUniversity of South AfricaJohannesburgSouth Africa

Personalised recommendations