Skip to main content
Log in

The effect of different alkali metal chloride fluxes on the phase formation and properties of Sr-based hexaferrite, SrFe12O19 materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to prepare SrFe12O19 materials, the raw materials, SrCO3 and Fe2O3 were annealed with different alkali metal chlorides such as LiCl + NaCl, LiCl + KCl, LiCl + CsCl, NaCl + CsCl, and KCl + CsCl as the flux at 1200 °C for 5 h. The structural features of SrFe12O19 materials prepared without flux have been compared. The phase formation and the properties of the SrFe12O19 materials are sensible to the fluxes used in the synthesis process. The fluxes, NaCl + CsCl, and KCl + CsCl produced good quality nanocrystalline SrFe12O19 materials, whereas the LiCl + NaCl, LiCl + KCl, and LiCl + CsCl flux reaction mixtures yielded mixed phase materials. The NIR reflectance of the present series materials varies regardless of the fluxes used in the synthesis. Relatively high NIR reflectance is noted for the KCl + CsCl flux annealed SrFe12O19 materials even though KCl + CsCl and NaCl + CsCl fluxes yielded single phase SrFe12O19 materials. A typical hard ferromagnetic hysteresis loop opening is observed at room temperature (300 K) for the NaCl + CsCl and KCl + CsCl fluxes annealed SrFe12O19 materials. Plate-like hexagonal grains with different size are observed in the microstructural images of the NaCl + CsCl flux annealed SrFe12O19 materials. The molten salt flux method employed in the present work is simple and efficient for the production of phase pure SrFe12O19 materials using NaCl + CsCl, and KCl + CsCl as the flux, that are worth for different high-tech applications including satellite communications, magneto-optical recording, data storage, and electrical and microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.Z. Shoushtari, S.E.M Ghahfarokhi, F. Ranjbar, A study of the morlogical properties of SrFe12−xCoxO19 (x = 0, 0. 1, 0.2) hexaferrite nanoparticles. J. Supercond. Novel Magn. 28, 1601–1609 (2015)

    Article  Google Scholar 

  2. M.A.P Buzinaro, N.S. Ferreira, F. Cunha, M.A. Macedo, Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceram. Int. 42, 5865–5872 (2016)

    Article  Google Scholar 

  3. V.G. Kostishin, L.V. Panina, L.V. Kozhitov, A.V. Timofeev, A.K. Zuzin, A.N. Kovalev, Synthesis and multiferroic properties of M-type hexagonal SrFe12O19 ferrite ceramic. J. Surf. Invest. 9, 1152–1155 (2015)

    Article  Google Scholar 

  4. D. Chen, D. Zeng, Z. Liu, Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles. Mater. Res. Express (2016). doi:10.1088/2053-1591/3/4/045002

    Google Scholar 

  5. X. He, W. Zhong, S. Yan, C.T. Au, L. Lu, Y. Du, The structure, morphology and magnetic properties of Sr-ferrite powder prepared by the molten-salt method. J. Phys. D (2014). doi:10.1088/0022-3727/47/23/235002

    Google Scholar 

  6. S.E. Rowley, Y.S. Chai, S.P. Shen, Y. Sun, A.T. Jones, B.E. Watts, J.F. Scott, Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19., Sci. Rep. (2016). doi:10.1038/srep25724

    Google Scholar 

  7. S.F. Wang, C. Zhang, G. Sun, B. Chen, W. Liu, X. Xiang, H. Wang, L. Fang, Q. Tian, Q. Ding, X.T. Zu, Effect of carbon and sintering temperature on the structural and magnetic properties of SrFe12O19 nanoparticles. J. Sol-Gel. Sci. Technol. 73, 371–378 (2015)

    Article  Google Scholar 

  8. T.Y. Hwang, G.H. An, J.H. Cho, J. Kim, Y.H. Choa, Effects of different salts on salt-assisted ultrasonic spray pyrolysis (SA-USP) calcination for the synthesis of strontium ferrite. J. Nanosci. Nanotechnol. 15, 8062–8069 (2015)

    Article  Google Scholar 

  9. A. Baykal, Solvothermal synthesis of pure SrFe12O19 hexaferrite nanoplatelets. J. Supercond. Novel Magn. 27, 877–880 (2014)

    Article  Google Scholar 

  10. P. Sivakumar, L. Shani, Y. Yeshurun, A. Shaulov, A. Gedanken, Facile sonochemical preparation and magnetic properties of strontium hexaferrite (SrFe12O19) nanoparticles. J. Mater. Sci. 27, 5707–5714 (2016)

    Google Scholar 

  11. J. Liu, X. Xue, Morphology and magnetic properties of SrFe12O19 synthesized with oxidized scale. Mater. Lett. 164, 579–582 (2016)

    Article  Google Scholar 

  12. B.C. Brightlin, S. Balamurugan, The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties. Appl. Nanosci. 6, 1199–1210 (2016)

    Article  Google Scholar 

  13. B.C. Brightlin, S. Balamurugan, T. Arun, Micro-structural and magnetic features of SrFe12O19 materials synthesized from different fuels by sol-gel auto combustion method. J. Supercond. Novel Magn. (2017). doi:10.1007/s10948-016-3940-1

    Google Scholar 

  14. V. Petricek, M. Dusek, L. Palatinus, in Jana 2006. The Crystallographic Computing System. (Institute of Physics, Praha, 2006)

    Google Scholar 

  15. J.M. Cowley, in Diffraction Physics, 2nd edn. (North-Holland, Amsterdam, 1981)

    Google Scholar 

  16. B.C. Brightlin, S. Balamurugan, Magnetic, micro-structural, and optical properties of hexa-ferrite, BaFe12O19 materials synthesized by salt flux assisted method. J. Supercond. Novel Magn. 30, 215–225 (2017)

    Article  Google Scholar 

  17. C. Zhang, Q. Li, Y. Ye, Preparation and characterization of polypyrrole/nano-SrFe12O19 composites by in situ polymerization method. Synth. Met. 159, 1008–1013 (2009)

    Article  Google Scholar 

  18. A. Das, A. Roychowdhury, S.P. Pati, S. Bandyopadhyay, D. Das, Structural, magnetic and hyperfine properties of single-phase SrFe12O19 nanoparticles prepared by a sol-gel route. Phys. Scr. (2015). doi:10.1088/0031-8949/90/2/025802

    Google Scholar 

  19. Z. Durmus, H. Kavas, A. Durmus, B. Aktas, Synthesis and micro-structural characterization of graphene/strontium hexaferrite (SrFe12O19) nanocomposites. Mater. Chem. Phys. 163, 439–445 (2015)

    Article  Google Scholar 

  20. C.S. Lin, C.C. Hwang, T.H. Huang, G.P. Wang, C.H. Peng, Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139, 24–36 (2007)

    Article  Google Scholar 

  21. J. Jiang, L.H. Ai, SrFe12O19/ZnO hybrid structures: Synthesis, characterization and properties. J. Alloy. Compd. 502, 488–490 (2010)

    Article  Google Scholar 

  22. S. Balamurugan, B.C. Brightlin, V.S.A Kiruba, Synthesis of BaFe12O19 materials by mechano-thermal route: novel inorganic pigment with high near-infrared reflectance. J. Nanosci. Nanotechnol. 15, 9494–9499 (2015)

    Article  Google Scholar 

  23. S. Balamurugan, S.P. Resmi, Synthesis of nanocrystalline BaFe12O19 materials by co-precipitation method using KOH and K2CO3 as precipitating agent. Adv. Sci. Eng. Med. 7, 183–189 (2015)

    Article  Google Scholar 

  24. M. Habeeba, S. Balamurugan, S.P. Resmi, An efficient synthesis of nanocrystalline BaFe12O19 materials by modified co-precipitation method. AIP Conf. Proc. 1731, 050027 (2016). doi:10.1063/1.4947681

    Article  Google Scholar 

  25. W.P. Menashi, T.R. Aucoin, J.R.S Iappiro, D.W. Eckart, Recrystallization of barium ferrite under high pressure oxygen. J. Cryst. Growth 20, 68–70 (1973)

    Article  Google Scholar 

  26. J. Huang, H. Zhuang, W. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion. Mater. Res. Bull. 38, 149–159 (2003)

    Article  Google Scholar 

  27. S.M.E. Sayed, T.M. Meaz, M.A. Amer, H.A. Elshersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)

    Article  Google Scholar 

  28. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author S. Balamurugan is thankful to the Tamilnadu State Council for Science and Technology (TNSCST) (Ref.: AR/PS/2012–2013/209) for a partial support to the present work. Dr. K. Vinod, Low Temperature Studies Section, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamilnadu, India is acknowledged for his kind help in the VSM measurements. V. Sherly Arputha Kiruba is acknowledged for her help in the sample preparation. The FESEM-EDX for the present sample was performed at the nanotechnology research centre of SRM University, India which is also acknowledged. Further the authors are thankful to Dr. N. Palanisami, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India for his help in the XRD analysis of the SrFe12O19 materials prepared without flux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brightlin, B.C., Balamurugan, S. The effect of different alkali metal chloride fluxes on the phase formation and properties of Sr-based hexaferrite, SrFe12O19 materials. J Mater Sci: Mater Electron 28, 11907–11914 (2017). https://doi.org/10.1007/s10854-017-6999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6999-y

Keywords

Navigation