Skip to main content
Log in

Electrical conductivity & temperature sensitivity of ceramics based on NiO simple oxides for NTC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LiF-doped NiO ceramics with various contents of B2O3/SiO2 additives were prepared by a wet-chemical synthesis method. The phase component and micro-structures of the ceramics were detected by using X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy. The related electrical conductivity and thermal sensitivity were investigated by analyzing the resistance–temperature characteristic and complex impedance spectra. The results show that the NiO-based ceramics have the cubic crystalline structure, and show the typical characteristic of negative temperature coefficient (NTC) of resistivity. The NiO-based ceramics, with various contents of B2O3/SiO2, have the NTC materials constant B values ranging from 3500 to 3800 K. The substitution of B2O3/SiO2 affects obviously the room-temperature resistivity of the ceramics, but has insignificant effect in the B values. The band conduction and electron hopping models are proposed for the conduction mechanisms for the NiO-based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Shpotyuk, A. Kovalskiy, O. Mrooz, L. Shpotyuk, V. Pechnyo, S. Volkov, J. Eur. Ceram. Soc. 21, 2067–2070 (2001)

    Article  Google Scholar 

  2. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  Google Scholar 

  3. M.N. Muralidharan, P.R. Rohini, E.K. Sunny, K.R. Dayas, A. Seema, Ceram. Int. 38, 6481–6486 (2012)

    Article  Google Scholar 

  4. A. Feltz, W. Pölzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)

    Article  Google Scholar 

  5. X. Li, J. Mater. Sci. 19, 271–274 (2007)

    Google Scholar 

  6. D.L. Fang, C.S. Chen, A.J.A. Winnubst, J. Alloy Compd. 454, 286–291 (2008)

    Article  Google Scholar 

  7. K. Park, I.H. Han, Mater. Sci. Eng. B 119, 55–60 (2005)

    Article  Google Scholar 

  8. D. Xue, H. Zhang, Y. Li, Z. Li, J. Mater. Sci. 23, 1306–1312 (2012)

    Google Scholar 

  9. J. Wang, H. Zhang, D. Xue, Z. Li, J. Phys. D 42, 235103–235107 (2009)

    Article  Google Scholar 

  10. C. Yuan, X. Wu, J. Huang, X. Liu, B. Li, Solid State Sci. 12, 2113–2119 (2010)

    Article  Google Scholar 

  11. X. Sun, H. Zhang, Y. Liu, Z. Li, J. Adv. Ceram. 5, 329–336 (2016)

    Article  Google Scholar 

  12. B. Yang, H. Zhang, J. Guo, Y. Liu, Z. Li, Front. Mater. Sci. 10, 413–421 (2016)

    Article  Google Scholar 

  13. J. Zhang, H. Zhang, B. Yang, Y. Zhang, Z. Li, J. Mater. Sci. 27, 4935–4942 (2016)

    Google Scholar 

  14. B. Yang, H. Zhang, J. Zhang, X. Zhang, Z. Li, J. Mater. Sci. 26, 10151–10158 (2015)

    Google Scholar 

  15. P. Ouyang, H. Zhang, Y. Zhang, J. Wang, Z. Li, J. Mater. Sci. 26, 6163–6169 (2015)

    Google Scholar 

  16. G. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. 28, 363–370 (2017)

    Google Scholar 

  17. J. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. 27, 11902–11908 (2016)

    Google Scholar 

  18. H.J. Kim, J.H. Lee, Sensor Actuator B 192, 607–627 (2014)

    Article  Google Scholar 

  19. M. Liu, J. Chang, J. Sun, L. Gao, RSC Adv. 3, 8003–8008 (2013)

    Article  Google Scholar 

  20. Z. Ma, H. Zhang, Y. Zhang, J. Zhang, Z. Li, Electrochim. Acta. 176, 1427–1433 (2015)

    Article  Google Scholar 

  21. W. Yan, W. Weng, G. Zhang, Z. Sun, Q. Liu, Z. Pan, Y. Guo, P. Xu, S. Wei, Y. Zhang, S. Yan, Appl. Phys. Lett. 92, 052508-3 (2008)

    Google Scholar 

  22. Y.H. Lin, R. Zhao, C.W. Nan, M. Ying, M. Kobayashi, Y. Ooki, A. Fujimori, Appl. Phys. Lett. 89, 202501–202503 (2006)

    Article  Google Scholar 

  23. S.C. Choi, K. Koumoto, H. Yanagida, J. Mater. Sci. 21, 1947–1950 (1986)

    Article  Google Scholar 

  24. D.A. Kukuruznyak, J.G. Moyer, F.S. Ohuchi, J. Am. Ceram. Soc. 89, 189–192 (2006)

    Article  Google Scholar 

  25. T.S. John, D.C.S. Irvine, R.A. West, Adv. Mater. 2, 132–138 (1990)

    Article  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  27. A.K. Jonscher, Dielectric Relaxation in Solids. (Chelsca Dielectric Press, London, 1983)

    Google Scholar 

  28. E.D. Macklen, J. Phys. Chem. Solid 47, 1073–1079 (1986)

    Article  Google Scholar 

  29. J. Jung, J. Töpfer, J. Mürbe, A. Feltz, J. Eur. Ceram. Soc. 6, 351–359 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Jiangxi Yunjia High Tech Co., Ltd. (No. 738010128), Nanchang China, and by the National Nature Science Foundation of China (No. 51172287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Shao, J., Lin, H. et al. Electrical conductivity & temperature sensitivity of ceramics based on NiO simple oxides for NTC applications. J Mater Sci: Mater Electron 28, 11871–11877 (2017). https://doi.org/10.1007/s10854-017-6995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6995-2

Keywords

Navigation