Enhanced dielectric properties and suppressed leakage current density of PVDF composites flexible film through small loading of submicron Ba0.7Sr0.3TiO3 crystallites

  • Pallavi Gupta
  • Ashok Kumar
  • Monika Tomar
  • Vinay Gupta
  • Dwijendra P. SinghEmail author


Ba0.7Sr0.3TiO3 (BST) crystallites prepared by sol–gel technique are incorporated into poly(vinylidene fluoride) PVDF matrix by solution casting technique. Cuboid shape of crystallite has been confirmed by high resolution transmission electron microscopy. PVDF composite films exhibit high dielectric constant and very low leakage current density. The dielectric constant ~22 (at 1 kHz) has been obtained for composites containing 11 vol% of BST crystallite; which is ~3 times higher than the dielectric constant of the pure PVDF (~7.9). Moreover, the leakage current density with same loading of BST crystallite increased only by one order (i.e. 10−7Amp/cm2 for pure PVDF to 10−6Amp/cm2). The observed value of leakage current density is very small as compared to earlier reports. The dielectric loss was found to be 0.02–0.03 at 1 kHz, which is also very small. The improved dielectric behavior is attributed to the improved interface between PVDF and BST crystallite and, the suppressed leakage current density might be arising due to smaller conducting pathways at interface.


PVDF Dielectric Loss High Resolution Transmission Electron Microscopy High Dielectric Constant Leakage Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Pallavi Gupta is grateful to the University Grant Commission (UGC) for providing fellowship to complete this work.


  1. 1.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25(44), 6334–6365 (2013)CrossRefGoogle Scholar
  2. 2.
    K. Yu, Y. Niu, F. Xiang, Y. Zhou, Y. Bai, H. Wong, J. Appl. Phys. 114(17), 174107 (2013)CrossRefGoogle Scholar
  3. 3.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113(3), 034105 (2013)CrossRefGoogle Scholar
  4. 4.
    B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313(5785), 334–336 (2006)CrossRefGoogle Scholar
  5. 5.
    D.R. Wang, T. Zhou, J.W. Zha, J. Zhao, C.Y. Shi, Z.M. Dang, J. Mater. Chem. A 1(20), 6162–6168 (2013)CrossRefGoogle Scholar
  6. 6.
    H.Y. Liu, Y. Shen, Y. Song, C.W. Nan, Y.H. Lin, X.P. Yang, Adv. Mater. 23(43), 5104–5108 (2011)CrossRefGoogle Scholar
  7. 7.
    Y.C. Zhou, Y.Y. Bai, K. Yu, Y. Kang, H. Wang, Appl. Phys. Lett. 102(25), 252903 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Zhou, J.W. Zha, R.Y. Cui, B.H. Fan, J.K. Yuan, Z.M. Dang, ACS Appl. Mater. Interfaces 3(7), 2184–2188 (2011)CrossRefGoogle Scholar
  9. 9.
    W.M. Xia, Z. Xu, F. Wen, Z.C. Zhang, Ceram. Int. 38(2), 1071–1075 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Hammami, M. Arous, M. Lagache, A. Kallel, J. Alloys Comp. 430(1–2), 1–8 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Prabakaran, S. Mohanty, S.K. Nayak, J. Mater. Sci. 25(10), 4590–4602 (2014)Google Scholar
  12. 12.
    P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, J.W. Perry, Adv. Mater. 19(7), 1001–1005 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Andrews, Y. Lin, H.A. Sodano, Smart Mater. Struct. 19(2), 025018 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Song, Y. Shen, H.Y. Liu, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. 22(32), 16491–16498 (2012)CrossRefGoogle Scholar
  15. 15.
    H.X. Tang, H.A. Sodano, Nano Lett. 13(4), 1373–1379 (2013)CrossRefGoogle Scholar
  16. 16.
    Z.P. Wang, J.K. Nelson, J.J. Miao, R.J. Linhardt, L.S. Schadler, H. Hillborg, S. Zhao, IEEE Trans. Dielectr. Electr. Insul. 19(3), 960–967 (2012)CrossRefGoogle Scholar
  17. 17.
    H.X. Tang, Y.R. Lin, C. Andrews, H.A. Sodano, Nanotechnology 22(1), 015702 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Song, Y. Shen, P.H. Hu, Y.H. Lin, M. Li, C.W. Nan, Appl. Phys. Lett. 101(15), 152904 (2012)CrossRefGoogle Scholar
  19. 19.
    S.H. Liu, J.W. Zhai, J.W. Wang, S.X. Xue, W.Q. Zhang, ACS Appl. Mater. Interfaces 6(3), 1533–1540 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, H. Yan, ACS Appl. Mater. Interfaces 7(44), 24480–24491 (2015)CrossRefGoogle Scholar
  21. 21.
    S.H. Liu, S.X. Xue, W.Q. Zhang, J.W. Zhai, G.H. Chen, J. Mater. Chem. A 2(42), 18040–18046 (2014)CrossRefGoogle Scholar
  22. 22.
    U. Yaqoob, A.S.M.I. Uddin, G.S. Chung, RSC Adv. 6(36), 30747–30754 (2016)CrossRefGoogle Scholar
  23. 23.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57(4), 660–723 (2012)CrossRefGoogle Scholar
  24. 24.
    M.N. Almadhoun, U.S. Bhansali, H.N. Alshareef, J. Mater. Chem. 22(22), 11196–11200 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Bull. Mater. Sci. 34(4), 727–733 (2011)CrossRefGoogle Scholar
  26. 26.
    P. Singh, H. Borkar, B.P. Singh, V.N. Singh, A. Kumar, AIP Adv. 4(8), 087117 (2014)CrossRefGoogle Scholar
  27. 27.
    G.K. Williamson, W.H. Hall, Acta Metall. 1(1), 22–31 (1953)CrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, Boston, 1956)Google Scholar
  29. 29.
    A.K. Zak, W.C. Gan, W.H.A. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37(5), 1653–1660 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Yu, P. Cebe, Polymer 50(9), 2133–2141 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Lanceros-Méndez, J.F. Mano, A.M. Costa, V.H. Schmidt, J. Macromol. Sci. Part B 40(3–4), 517–527 (2001)CrossRefGoogle Scholar
  32. 32.
    J.C. Maxwell, J.J. Thompson, A Treatise on Electricity and Magnetism, (Clarendon, Oxford, 1892), Vol. 1Google Scholar
  33. 33.
    K. Wagner, Archiv for Elektrotechnik 2(9), 371–387 (1914)CrossRefGoogle Scholar
  34. 34.
    T. Mizutani, T. Nagata, M. Ieda, J. Phys. D 17(9), 1883–1887 (1984)CrossRefGoogle Scholar
  35. 35.
    N. Hirose, A.R. West, J. Am. Ceram. Soc. 79(6), 1633–1641 (1996)CrossRefGoogle Scholar
  36. 36.
    M.P. McNeal, S.J. Jang, R.E. Newnham, J. Appl. Phys. 83(6), 3288–3297 (1998)CrossRefGoogle Scholar
  37. 37.
    J.J. Li, J. Claude, L.E.N. Franco, S.I. Seok, Q. Wang, Chem. Mater. 20(20), 6304–6306 (2008)CrossRefGoogle Scholar
  38. 38.
    K. Yang, X. Huang, Y. Huang, L. Xie, P. Jiang, Chem. Mater. 25(11), 2327–2338 (2013)CrossRefGoogle Scholar
  39. 39.
    B.H. Fan, J.W. Zha, D. Wang, J. Zhao, Z.M. Dang, Appl. Phys. Lett. 100(1), 012903 (2012)CrossRefGoogle Scholar
  40. 40.
    C.V. Chanmal, J.P. Jog, Exp. Polym. Lett. 2(4), 294–301 (2008)CrossRefGoogle Scholar
  41. 41.
    B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2(2), 510–519 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, T. Tanaka, ACS Appl. Mater. Interfaces 3(11), 4396–4403 (2011)CrossRefGoogle Scholar
  43. 43.
    W. Osak, K. Tkacz, J. Phys. D 22(11), 1746–1750 (1989)CrossRefGoogle Scholar
  44. 44.
    N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22(4), 1567–1578 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pallavi Gupta
    • 1
  • Ashok Kumar
    • 2
  • Monika Tomar
    • 3
  • Vinay Gupta
    • 4
  • Dwijendra P. Singh
    • 1
    Email author
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.CSIR-National Physical LaboratoryNew DelhiIndia
  3. 3.Department of PhysicsUniversity of DelhiDelhiIndia
  4. 4.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations