Skip to main content
Log in

Improved dielectric properties of PVDF composites by employing Mg-doped La1.9Sr0.1NiO4 particles as a filler

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric properties of La1.9Sr0.1Ni0.6Mg0.4O4/poly(vinylidene fluoride) (LSNMO/PVDF) composites were investigated. A giant-permittivity LSNMO ceramic was used as a filler to enhance the dielectric permittivity (ε′) of a PVDF polymer. LSNMO particles were well dispersed in the PVDF matrix. ε′ and the loss tangent (tanδ) of the composites increased with increasing LSNMO volume fraction. Interestingly, a greatly enhanced ε′ ≈ 103 was obtained in the LSNMO/PVDF composite with 50 vol% LSNMO, which was ≈100 times higher than that of pure PVDF. The percolation theory, effective medium theory, and effective medium percolation theory (EMPT) models were employed to describe the dielectric behavior of the LSNMO/PVDF composites. The calculated values obtained by the EMPT model were in close agreement with the experimental values. The large increases in ε′ was described as a combination of strong interfacial polarization due to a short inter-particle distance between LSNMO particles and a high ε′ of LSNMO ceramic filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Arbatti, X. Shan, Z.Y. Cheng, Adv. Mater. 19, 1369–1372 (2007)

    Article  Google Scholar 

  2. L. Xie, X. Huang, K. Yang, S. Li, P. Jiang, J. Mater. Chem. A 2, 5244–5251 (2014)

    Article  Google Scholar 

  3. Z. Wang, M. Fang, H. Li, Y. Wen, C. Wang, Y. Pu, Compos. Sci. Technol. 117, 410–416 (2015)

    Article  Google Scholar 

  4. Z.M. Dang, J.B. Wu, L.Z. Fan, C.W. Nan, Chem. Phys. Lett. 376, 389–394 (2003)

    Article  Google Scholar 

  5. F. Fang, W. Yang, S. Yu, S. Luo, R. Sun, Appl. Phys. Lett. 104, 132909 (2014)

    Article  Google Scholar 

  6. D. Wang, T. Zhou, J.-W. Zha, J. Zhao, C.-Y. Shi, Z.-M. Dang, J. Mater. Chem. A 1, 6162–6168 (2013)

    Article  Google Scholar 

  7. Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Prog. Mater. Sci. 57, 660–723 (2012)

    Article  Google Scholar 

  8. E.-Q. Huang, J. Zhao, J.-W. Zha, L. Zhang, R.-J. Liao, Z.-M. Dang, J. Appl. Phys. 115, 194102 (2014)

    Article  Google Scholar 

  9. J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, H. Yan, ACS Appl. Mater. Interfaces 7, 24480–24491 (2015)

    Article  Google Scholar 

  10. K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113, 034105 (2013)

    Article  Google Scholar 

  11. X.-J. Zhang, G.-S. Wang, Y.-Z. Wei, L. Guo, M.-S. Cao. J. Mater. Chem. A 1, 12115–12122 (2013)

    Article  Google Scholar 

  12. P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Compos. Sci. Technol. 70, 539–545 (2010)

    Article  Google Scholar 

  13. S. Liu, S. Xue, W. Zhang, J. Zhai, G. Chen, J. Mater. Chem. A 2, 18040–18046 (2014)

    Article  Google Scholar 

  14. Prateek, V.K. Thakur, R.K. Gupta, Chem. Rev. 116, 4260–4317 (2016)

    Article  Google Scholar 

  15. Y.-L. Su, C. Sun, W.-Q. Zhang, H. Huang, J. Mater. Sci. 48, 8147–8152 (2013)

    Article  Google Scholar 

  16. S. Luo, S. Yu, R. Sun, C.-P. Wong, ACS Appl. Mater. Interfaces 6, 176–182 (2014)

    Article  Google Scholar 

  17. Z.-M. Dang, T. Zhou, S.-H. Yao, J.-K. Yuan, J.-W. Zha, H.-T. Song, J.-Y. Li, Q. Chen, W.-T. Yang, J. Bai, Adv. Mater. 21, 2077–2082 (2009)

    Article  Google Scholar 

  18. Z.-M. Dang, B. Peng, D. Xie, S.-H. Yao, M.-J. Jiang, J. Bai, Appl. Phys. Lett. 92, 112910 (2008)

    Article  Google Scholar 

  19. Z.-M. Dang, C.-W. Nan, Ceram. Int. 31, 349–351 (2005)

    Article  Google Scholar 

  20. M. Yao, S. You, Y. Peng, Ceram. Int. 43, 3127–3132 (2017)

    Article  Google Scholar 

  21. M. Fang, Z. Wang, H. Li, Y. Wen, Ceram. Int. 41, (Supplement 1), S387–S392 (2015)

    Article  Google Scholar 

  22. P. Kum-onsa, P. Thongbai, S. Maensiri, P. Chindaprasirt, J. Mater. Sci. Mater. Electron. 27, 9650–9655 (2016)

    Article  Google Scholar 

  23. K. Meeporn, S. Maensiri, P. Thongbai, Appl. Surf. Sci. 380, 67–72 (2016)

    Article  Google Scholar 

  24. M.-F. Lin, P.S. Lee, J. Mater. Chem. A 1, 14455–14459 (2013)

    Article  Google Scholar 

  25. H. Tang, H.A. Sodano, Nano Lett. 13, 1373–1379 (2013)

    Article  Google Scholar 

  26. S. Krohns, P. Lunkenheimer, C. Kant, A.V. Pronin, H.B. Brom, A.A. Nugroho, M. Diantoro, A. Loidl, Appl. Phys. Lett. 94, 122903 (2009)

    Article  Google Scholar 

  27. T. Park, Z. Nussinov, K. Hazzard, V. Sidorov, A. Balatsky, J. Sarrao, S.W. Cheong, M. Hundley, J.-S. Lee, Q. Jia, J. Thompson, Phys. Rev. Lett. 94, 017002 (2005)

    Article  Google Scholar 

  28. X.Q. Liu, B.W. Jia, W.Z. Yang, J.P. Cheng, X.M. Chen, J. Phys. D 43, 495402 (2010)

    Article  Google Scholar 

  29. B.W. Jia, W.Z. Yang, X.Q. Liu, X.M. Chen, J. Appl. Phys. 112, 024104 (2012)

    Article  Google Scholar 

  30. K. Silakaew, W. Saijingwong, K. Meeporn, S. Maensiri, P. Thongbai, Microelectron. Eng. 146, 1–5 (2015)

    Article  Google Scholar 

  31. K. Meeporn, N. Chanlek, P. Thongbai, RSC Adv. 6, 91377–91385 (2016)

    Article  Google Scholar 

  32. K. Meeporn, T. Yamwong, P. Thongbai, Jpn. J. Appl. Phys. 53, 06JF01 (2014)

    Article  Google Scholar 

  33. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)

    Article  Google Scholar 

  34. C.W. Nan, Y. Shen, J. Ma, Annu. Rev. Mater. Res. 40, 131–151 (2010)

    Article  Google Scholar 

  35. J. Fu, Y. Hou, Q. Wei, M. Zheng, M. Zhu, H. Yan, J. Appl. Phys. 118, 235502 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Thailand Research Fund (TRF) and Khon Kaen University (Contract No. RSA5880012) and under the TRF Senior Research Scholar (Contract No. RTA5780004). This work was partially supported by the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University. K.M. would like to thank the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0191/2556) for his Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasit Thongbai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeporn, K., Thongbai, P., Maensiri, S. et al. Improved dielectric properties of PVDF composites by employing Mg-doped La1.9Sr0.1NiO4 particles as a filler. J Mater Sci: Mater Electron 28, 11762–11768 (2017). https://doi.org/10.1007/s10854-017-6981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6981-8

Keywords

Navigation