Skip to main content

Advertisement

Log in

Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigated the structure, dielectric properties and energy density performances of cubic perovskite-structured Mg-doped SrTiO3 ceramics that were prepared by the solid-state reaction method. SrTiO3 ceramic exhibited a relatively stable permittivity about 265–290 and enhanced dielectric breakdown strength (DBS) by Mg isovalent doping. Doping effects on the energy-storage properties in SrTiO3 ceramics was performed by complex impedance analysis and polarization–electric field hysteresis loops. The energy storage density was dependent on DBS while energy efficiency was closely related to the remnant polarization. The possible physical mechanisms, including grain, gain boundary and interfacial polarization effects, were discussed to explain the improvement of dielectric breakdown strength. The bulk Mg-doped SrTiO3 materials have shown interesting energy densities (1.86 J/cm3) with good energy storage efficiency (about 89.3%) indicating that they can be a promising candidate for high energy density capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339 (1972)

    Article  Google Scholar 

  2. G.R. Love, J. Am. Ceram. Soc. 73, 323 (1990)

    Article  Google Scholar 

  3. N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, J. Phys. Condens. Matter. 24, 445901 (2012)

    Article  Google Scholar 

  4. D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, J. Am. Ceram. Soc. 95, 1348 (2012)

    Article  Google Scholar 

  5. R. Su, Z. Luo, D. Zhang, Y. Liu, Z. Wang, J. Li, J. Bian, Y. Li, X. Hu, J. Gao, Y. Yang, J. Phys. Chem. C 120, 11769 (2016)

    Article  Google Scholar 

  6. Z.H. Wu, H.X. Liu, M.H. Cao, Z.Y. Shen, Z.H. Yao, H. Hao, D.B. Luo, J. Ceram. Soc. Jpn. 116, 345 (2008)

    Article  Google Scholar 

  7. X.H. Hao, J. Adv. Dielectr. 3, 1330001 (2013)

    Article  Google Scholar 

  8. J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009)

    Article  Google Scholar 

  9. N.H. Fletcher, A.D. Hilton, B.W. Ricketts, J. Phys. D. Appl. Phys. 29, 253 (1996)

    Article  Google Scholar 

  10. X. Su, B.C. Riggs, M. Tomozawa, J.K. Nelsonc, D.B. Chrisey, J. Mater. Chem. A 2, 18087 (2014)

    Article  Google Scholar 

  11. A.K. Yadav, C. Gautam, J. Mater. Sci. Mater. Electron 25, 5165 (2014)

    Article  Google Scholar 

  12. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96, 2699 (2013)

    Article  Google Scholar 

  13. H. Ogihara, C.A. Randall, S.T. McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009)

    Article  Google Scholar 

  14. Y. Li, Y. Yang, R. Viswan, J. Li, D. Viehland, Appl. Phys. Lett. 101, 022905 (2012)

    Article  Google Scholar 

  15. Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146 (2015)

    Article  Google Scholar 

  16. Y. Yan, C. Ning, Z. Jin, H. Qin, W. Luo, G. Liu, J. Alloys Compd. 646, 748 (2015)

    Article  Google Scholar 

  17. M.S. Mirshekarloo, K. Yao, T. Sritharan, Appl. Phys. Lett. 97, 142902 (2010)

    Article  Google Scholar 

  18. V. Gaurav, V. Rahul, B. Chris, Int. J. Appl. Ceram. Technol. 12, E1 (2015)

    Google Scholar 

  19. T. Wang, L. Jin, C. Li, Q. Hu, X.Y. Wei, J. Am. Ceram. Soc. 98, 559 (2015)

    Article  Google Scholar 

  20. B. Liu, X.H. Wang, Q. Zhao, L.T. Li, J. Am. Ceram. Soc. 98, 2641 (2015)

    Article  Google Scholar 

  21. H.G. Wisken, F. Podeyn, H.G. Weise, IEEE Trans. Magn. 37, 332 (2001)

    Article  Google Scholar 

  22. Y. Wang, X. Hao, J. Yang, J. Xu, D. Zhao, J. Appl. Phys. 112, 034105 (2012)

    Article  Google Scholar 

  23. J. Parui, S.B. Krupanidhi, Appl. Phys. Lett. 92, 192901 (2008)

    Article  Google Scholar 

  24. V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, J. Alloys Compd. 584, 369 (2014)

    Article  Google Scholar 

  25. Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L.Q. Chen, D. Viehland, Nat. Commun. 6, 6680 (2015)

    Article  Google Scholar 

  26. B.H. Ma, D.K. Kwon, M. Narayanan, U.B. Balachandran, J. Mater. Res. 24, 2993 (2009)

    Article  Google Scholar 

  27. S. Liu, J.W. Zhai, J. Mater. Chem. A 3, 1511 (2015)

    Article  Google Scholar 

  28. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758 (2004)

    Article  Google Scholar 

  29. P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007)

    Article  Google Scholar 

  30. A. Vasudevarao, S. Denev, M.D. Biegalski, Y. Li, L.Q. Chen, S. Trolier-McKinstry, D.G. Schlom, V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008)

    Article  Google Scholar 

  31. G. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci. Mater. Electron. 26, 2726 (2015)

    Article  Google Scholar 

  32. Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci. Mater. Electron. 24, 704 (2013)

    Article  Google Scholar 

  33. T. Wang, L. Jin, L. Shu, Q. Hu, X. Wei, J. Alloys Compd. 617, 399 (2014)

    Article  Google Scholar 

  34. Z.J. Wang, M.H. Cao, Z.H. Yao, G.Y. Li, Z. Song, W. Hu, H. Hao, H.X. Liu, Z.Y. Yu, Ceram. Int. 40, 929 (2014)

    Article  Google Scholar 

  35. W. Cai, C.L. Fu, J.C. Gao, C.X. Zhao, Adv. Appl. Ceram. 110, 181 (2011)

    Article  Google Scholar 

  36. J.Y. Chen, C.L. Huang, Mater. Lett. 64, 2585 (2010)

    Article  Google Scholar 

  37. M. Tuhkala, J. Juuti, H. Jantunen, J. Appl. Phys. 115, 184101 (2014)

    Article  Google Scholar 

  38. C. Ang, A.S. Bhalla, R. Guo, L.E. Cross, Appl. Phys. Lett. 76, 1929 (2000)

    Article  Google Scholar 

  39. C. Ang, L.E. Cross, Z. Yu, R. Guo, A.S. Bhalla, J.H. Hao, Appl. Phys. Lett. 78, 2754 (2001)

    Article  Google Scholar 

  40. G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R 89, 1 (2015)

    Article  Google Scholar 

  41. Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Ceram. Int. 40, 14127 (2014)

    Article  Google Scholar 

  42. H. Tang, H.A. Sodano, Nano. Lett. 13, 1373 (2013)

    Article  Google Scholar 

  43. H. Tang, Y. Lin, H.A. Sodano, Adv. Energy Mater. 3, 451 (2013)

    Article  Google Scholar 

  44. H. Tang, H.A. Sodano, Appl. Phys. Lett. 102, 063901 (2013)

    Article  Google Scholar 

  45. J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 042902 (2010)

    Article  Google Scholar 

  46. S. Xue, S. Liu, W. Zhang, B. Shen, J. Zhai, Appl. Phys. Lett. 106, 162903 (2015)

    Article  Google Scholar 

  47. H. Nie, N. Feng, X. Chen, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, J. Am. Ceram. Soc. 93, 642 (2010)

    Article  Google Scholar 

  48. Z. Song, H. Liu, H. Hao, S. Zhang, M. Cao, Z. Yao, Z. Wang, W. Hu, Y. Shi, B. Hu, IEEE Trans. Ultrason. Ferroelectr. FrEq. Contr. 62, 609 (2015)

    Article  Google Scholar 

  49. H.Y. Lee, K.H. Cho, H.D. Nam, Ferroelectrics 334, 165 (2006)

    Article  Google Scholar 

  50. J.C.C. Abrantes, A. Feighery, A.A.L. Ferreira, J.A. Labrincha, J.R. Frade, J. Am. Ceram. Soc. 85, 2745 (2002)

    Article  Google Scholar 

  51. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  52. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  53. Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Royba, M. Joler, in Proceedings 14th IEEE International Pulsed Power Conference 719 (2003)

  54. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014)

    Article  Google Scholar 

  55. M. Vollmann, R. Waser, J. Electroceram 1, 51 (1997)

    Article  Google Scholar 

  56. M. Vollmann, R. Hagenbeck, R. Waser, J. Am. Ceram. Soc. 80, 2301 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC-Guangdong Joint Funds of the Natural Science Foundation of China (No. U1601209), the National Key Basic Research Program of China (973 Program) (No. 2015CB654601), and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonghua Yao or Hanxing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Luo, Q., Zhang, G. et al. Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications. J Mater Sci: Mater Electron 28, 11491–11499 (2017). https://doi.org/10.1007/s10854-017-6945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6945-z

Keywords

Navigation