Skip to main content
Log in

Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium-cobalt-rare-earth nanoferrite samples of composition Cd0.7Co0.3Fe2O4 and Cd0.7Co0.3R0.05Fe1.95O4 (R = Ce, Sm, Gd, Er) were prepared by citrate auto combustion method. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure with the appearance of small peaks designated as secondary phases. The average crystallite sizes were found to be between 40.3 and 22.1 nm for pure and Gd doped samples respectively. The magnetic properties were studied by carrying out the hysteresis of the investigated samples at room temperature and at 100 K. The magnetic parameters, such as the saturation magnetization, coercivity Hc, squareness and loop area are markedly affected by increment of rare earth ions at the expense of Fe3+ ions in a spinel structure. The increase in magnetization of the nano ferrite samples at 100 K, may be clarified by annihilation of a nonmagnetic layers (surface dead layers) due to the rare earth doping. Greater than nearly nine-fold increase in coercivity was observed in pure and Ce, Sm doped compared to the Gd and Er samples. The data for Hc, Ms and Mr of lanthanide doped ferrites suggest their suitability in applications like magnetic targeting and separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.P. Dalawai, T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Bull. Mater. Sci. 36(5), 919–922 (2013)

    Article  Google Scholar 

  2. J. Chand, M. Singh, J. Alloys Compd. 486, 376, (2009)

    Article  Google Scholar 

  3. F. Muthafar, A.l. Hilli, S. Li, K.S. Kassim, Mater. Chem. Phys. 128, 127–132 (2011)

    Article  Google Scholar 

  4. M.A. Ahmed, E. Ateia, S.I. El-Dek, Mater. Lett. 57, 4256–4266 (2003)

    Article  Google Scholar 

  5. M.A. Gabal, Y.M. Al-Angari, J. Magn. Magn. Mater. 322, 3159–3165 (2010)

    Article  Google Scholar 

  6. M.S. Khandekar, R.C. Kambale, S.S. Latthe, J.Y. Patil, P.A. Shaikh, H. Hur, S. Suryavanshi, Mater. Lett. 65, 2972–2974 (2011)

    Article  Google Scholar 

  7. H. Klung, L. Alexander, X-ray Diffraction Procedures (Wiley, New York, EUA, 1962), p. 491

    Google Scholar 

  8. V. Musta Bujoreanu, E. Segal, J. Therm. Anal. Calorim. 68, 191–197 (2002)

    Article  Google Scholar 

  9. J.F. Huheey, E.A. Keiter, Chemistry Principles of Structure and Reactivity, (College Publishers, Harper Collins, New York, 1993), p. 543

    Google Scholar 

  10. X. Zhao, W. Wang, Y.J. Zhang, S. Wu, F. Li, J. Ping Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nano particles with enhanced adsorption capability for Congored. Chem. Eng. J. 250, 164–174 (2014)

    Article  Google Scholar 

  11. M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.N. Ashiq, S.A. Khan, Magnetic and electric behavior of praseodymium substituted CuPryFe2–yO4 ferrites. J. Magn. Magn. Mater. 422, 337–343 (2017)

    Article  Google Scholar 

  12. R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  13. X. Ma, H. Sun, H. He, M. Zheng, Catal. Lett. 119(1–2), 142–147 (2007)

    Article  Google Scholar 

  14. Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Gui, Mater. Sci. Eng. 64(1), 68–72 (1999)

    Article  Google Scholar 

  15. B.K. Labde, M.C. Sable, N.R. Shamkuwar, Mater. Lett. 57, 1651–1655 (2003)

    Article  Google Scholar 

  16. M. Mouallem-Bahout, S. Bertrand, O. Pena, J. Solid State Chem. 178(4), 1080–1086 (2005)

    Article  Google Scholar 

  17. O.M. Hemeda, J. Magn. Magn. Mater. 281, 36 (2006)

    Article  Google Scholar 

  18. E. Pervaiz, I.H. Gul, Int. J. Curr. Eng. Technol. 2, 4 (2012)

    Google Scholar 

  19. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites. J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-016-5517-y

  20. R.V. Upadhayay, R.V. Mehta, K. Prakash, D. Srinivas, R.R. Pant, Gd substituted ferrite ferrofluids: a possible candidate to enhance paramagnetic coefficient. J. Magn. Magn. Mater. 201, 129 (1999)

    Article  Google Scholar 

  21. K.M. Batoo, Nanoscale Res. Lett. 6, 499 (2011)

    Article  Google Scholar 

  22. J.P. Singh, H. Kumar, A. Singhal, N. Sarin, R.C. Srivastava, K.H. Chae, Solubility limit, magnetic interaction and conduction mechanism in rare earth doped spinel ferrite. Appl. Sci. Lett. 2(1), 03–11 (2016)

    Article  Google Scholar 

  23. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Phys. Chem. Chem. Phys. 16, 2347 (2014)

    Article  Google Scholar 

  24. F. Cheng, J. Jia, Z. Xu, B. Zhou, C. Liao, C. Yan, L. Chen, H. Zhao, J. Appl. Phys. 86(5), 2727 (1999)

    Article  Google Scholar 

  25. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, J. Magn. Magn. Mater. 390, 123–131 (2015)

    Article  Google Scholar 

  26. E.E. Ateia, A.T. Mohamed, Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method. J. Magn. Magn. Mater. 426, 217–224 (2017)

    Article  Google Scholar 

  27. U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Temperature dependent magnetic properties of CoFe2O4/CTAB nano composites synthesized by sol–gel auto-combustion technique. Ceram. Int. 39, 6551–6558 (2013)

    Article  Google Scholar 

  28. S. Chakrabarty, A. Dutta, M. Pal, Enhanced magnetic properties of doped cobalt ferrites by virtue of cation distribution. J. Alloys Compd. 625, 216–223 (2015)

    Article  Google Scholar 

  29. V. Naidu, S.K.A.A.K. Sahib, M. Suganthi, C. Prakash, Inter. J. Comp. Appl. 27, 18–22 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa A. H. El-Bassuony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E., El-Bassuony, A.A.H. Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J Mater Sci: Mater Electron 28, 11482–11490 (2017). https://doi.org/10.1007/s10854-017-6944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6944-0

Keywords

Navigation