Skip to main content
Log in

Influence of annealing temperature on structural, morphological and optical properties of CTAB assisted cadmium sulphide (CdS) quantum dots: promising candidate for quantum dot sensitized solar cell (QDSSC) applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium sulphide (CdS) quantum dots were successfully synthesized in an ambient condition through chemical precipitation technique under methanolic medium. Quantum confinement effect was achieved using cetyltrimethyl ammonium bromide (CTAB) which would be used as a stabilizing agent. In this article, we report the effect of annealing temperature on structural, morphology and optical properties of CdS nanoparticles. In this esteem, powder X-ray diffraction reveals the variation in the crystal structure and crystallite size by means of annealing temperature. IR spectroscopy confirms the coordination of CTAB with the CdS nanoparticles. FESEM and TEM analyses were used to investigate the morphology, particle size and particle size distribution of the CdS nanoparticles. EDX analysis gives the elemental composition of the title compound. UV–Vis-NIR reflectance spectroscopy explains the absorption nature and band gap of CdS nanoparticles. Photoluminescence analysis gives out the luminescence behavior of the title compound and its variation with regarding to the annealing temperature. Herein, we conclude that, the particle size increases according to the increase in annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Surana, P.K. Singh, H.-W. Rhee, B. Bhattacharya, J. Ind. Eng. Chem. 20, 4188–4193 (2014)

    Article  Google Scholar 

  2. H Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M.C. Wilson, C.J. Brinker. Nano Lett. 5, 645–648 (2005)

    Article  Google Scholar 

  3. Z. Deng, Y. Zhang, J. Yue, F. Tang, Q. Wei, J. Phys. Chem. B 111, 12024–12031 (2007)

    Article  Google Scholar 

  4. A. Aboulaich, D. Billaud, M. Abyan, L. Balan, G. Jean-Jacques, G. Medjadhi, J. Ghanbaja, R. Schneider, Appl. Mater. Interfaces 4, 2561–2569 (2012)

    Article  Google Scholar 

  5. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Electron. Mater. Lett. 7, 31–38 (2011)

    Article  Google Scholar 

  6. N. Li, X. Zhang, S. Chen, X. Hou, J. Phys. Chem. Solids 72, 1195–1198 (2011)

    Article  Google Scholar 

  7. M. Green, J. Mater. Chem 20, 5797–5809 (2010)

    Article  Google Scholar 

  8. C. Unni, D. Philip, K.G. Gopchandran, Spectrochim. Acta A 71, 1402–1407 (2008)

    Article  Google Scholar 

  9. M.A. Osman, W.A. El-Said, A.A. Othman, G.A. Abd-Elrahim. J. Phys. D 49, 165302 (2016)

    Article  Google Scholar 

  10. R.J. Bandaranayake, G.W. Wen, J.Y. Lin, H.X. Jiang, M.C. Sorensen, Appl. Phys. Lett. 67, 831 (1995)

    Article  Google Scholar 

  11. S. Chander, M.S. Dhaka, Mater. Sci. Semi. Process. 40, 708–712 (2015)

    Article  Google Scholar 

  12. S. Kumar, M. Gradzielski, S.K. Mehta, RSC Adv. 3, 2662–2676 (2013)

    Article  Google Scholar 

  13. K. Dhanabalan, S. Muthukkumarasamy, K. Gurunathan, Chalcogenide Lett. 9, 243–248 (2012)

    Google Scholar 

  14. M.F. Kotkata, A.E. Masoud, M.B. Mohamed, E.A. Mahmoud, Physica E 41, 1457–1465 (2009)

    Article  Google Scholar 

  15. P. Wang, J. Zhang, H. He, X. Xu, Y. Jin, Nanoscale 7, 5767–5775 (2013)

    Article  Google Scholar 

  16. H.B. Liu, Y.L. Li, H.Y. Luo, H.J. Fang, H.M. Li, S.Q. Xiao, Z.Q. Shi, S.X. Xiao, D.B. Zhu, Eur. Phys. J. D 24, 405–408 (2003)

    Article  Google Scholar 

  17. M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, G. Rumbles. J. Phys. Chem. B 107, 11346–11352 (2003)

    Article  Google Scholar 

  18. G.R. Amiri, S. Fatahian, S. Mahmoudi, Mater. Sci. Appl. 4, 134–137 (2013)

    Google Scholar 

  19. N. Ghows, M.H. Entezari, Ultrason. Sonochem 18, 269–275 (2011)

    Article  Google Scholar 

  20. C.T. Nam, W.-D. Yang, D.U.C Le Minh, Bull. Mater. Sci. 36, 779–788 (2013)

    Article  Google Scholar 

  21. P. Mandal, S.S. Talwar, S.S. Major, S.R. Srinivasa. J. Chem. Phys. 128, 114703 (2008)

    Article  Google Scholar 

  22. V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074–1079 (2009)

    Article  Google Scholar 

  23. F. Li, W. Bi, T. Kong, C. Wang, Z. Li, X. Huang, J. Alloys Compd. 479, 707–710 (2009)

    Article  Google Scholar 

  24. G. Murali, D.A. Reddy, B. Poornaprakash, R. P. Vijayalakshmi, N.M Rao, Optoelectron. Adv. Mater. 5, 928–931 (2011)

    Google Scholar 

  25. G. Giribabu, G. Murali, DA. Reddy, C. Liu, P.R. Vijayalakshmi, J. Alloys Compd. 581, 363–368 (2013)

    Article  Google Scholar 

  26. P. Kumar, N. Saxena, R. Chandra, V. Gupta, A. Agarwal, D. Kanjilal, Nanoscale Res. Lett 7, 584 (2012)

    Article  Google Scholar 

  27. L. Irimpan, D. Ambika, V. Kumar, V.P.N. Nampoori, P. Radhakrishnan, J. Appl. Phys. 104, 033118 (2008)

    Article  Google Scholar 

  28. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J.C. Grossman, J. Wu, Sci. Rep. 3, 2657 (2013)

    Article  Google Scholar 

  29. S.S. Liji Sobhana, M.V. Devi, T.P. Sastry, A.B. Mandal, J. Nanopart. Res. 13, 1747–1757 (2011)

    Article  Google Scholar 

  30. S. Muruganandam, G. Anbalagan, G. Murugadoss, Appl. Nanosci. 5, 245–253 (2015)

    Article  Google Scholar 

  31. Y.D. Wang, S. Zhang, C.L. Ma, H.D. Li, J. Lumin. 126, 661–664 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge STIC, Cochin University of Science and Technology, Cochin for transmission electron microscopy (TEM) analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Murugakoothan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniyappan, S., Solaiyammal, T., Keerthana, B.G.T. et al. Influence of annealing temperature on structural, morphological and optical properties of CTAB assisted cadmium sulphide (CdS) quantum dots: promising candidate for quantum dot sensitized solar cell (QDSSC) applications. J Mater Sci: Mater Electron 28, 11317–11324 (2017). https://doi.org/10.1007/s10854-017-6924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6924-4

Keywords

Navigation