Dye-sensitised solar cells with a naturally occurring pigment lycopene as a photosensitiser for zirconium dioxide: an experimental and theoretical study


In the present study, we investigated the prospect of utilization lycopene in a dye-sensitised solar cell (DSSC) with zirconium dioxide (ZrO2) as the photoanode. Carotenoids were extracted from the carrots in petroleum ether and then lycopene was isolated from the extract by column chromatographic separation method. The lycopene fraction of a column elute was identified using ultraviolet–visible spectroscopy. Energies of HOMO and LUMO levels of lycopene were theoretically calculated using Firefly at B3LYP/6-311G (d, p). ZrO2 was purchased from Sigma–Aldrich. It was characterised using powder X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. A ZrO2 film on fluorine-doped tin oxide conducting glass plate was prepared by the doctor blading technique followed by annealing at 450 °C in air for 1 h and then sensitised with lycopene. The sandwich type DSSC was fabricated and the current–voltage characteristics were investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    I.C. Flores, J.N. de Freitas, C. Longo, M.A. De Paoli, H. Winnischofer, A.F. Nogueira, J. Photochem. Photobiol. 1899(2–3), 153 (2007)

    Article  Google Scholar 

  2. 2.

    N. Kakuta, T. Oku, A. Suzuki, K. Kikuchi, S. Kikuchi, J. Ceramic Process. Res 13(1), 28 (2012)

    Google Scholar 

  3. 3.

    P. Ekanayake, R. Zain, M. Iskandar, K. Tennakoon, S. Yoshikawa, R. Senadeera, Solar Asia 2011 International Conference 246 (2011)

  4. 4.

    T. T. Win, Y. M. Maung, K. K. K. Soe, Adv. Mater. Res. 550–553, 2036 (2012)

    Article  Google Scholar 

  5. 5.

    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  6. 6.

    A. Yella, H. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)

    Article  Google Scholar 

  7. 7.

    S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Prog. Photovolt. 15(7), 603 (2007)

    Article  Google Scholar 

  8. 8.

    F.T. Kong, S.Y. Dai, K.J. Wang, Adv. Optoelectron. 2007, 1–13 (2007)

    Article  Google Scholar 

  9. 9.

    U. Mehmood, S. Rahman, K. Harrabi, I.A. Hussein, B.V.S. Reddy, Adv. Mater. Sci. Eng. (2014). doi:10.1155/2014/974782

    Google Scholar 

  10. 10.

    B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A 333, 264 (2007)

    Article  Google Scholar 

  11. 11.

    R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B 109, 24254 (2005)

    Article  Google Scholar 

  12. 12.

    M. Gratzel, J. Photochem. Photobiol. C 4(2), 145 (2003)

    Article  Google Scholar 

  13. 13.

    B. Tan, Y.Y. Wu, J. Phys. Chem. B 110, 15932 (2006)

    Article  Google Scholar 

  14. 14.

    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6(2), 215 (2006)

    Article  Google Scholar 

  15. 15.

    K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, J. Nano Lett. 7(1), 69 (2007)

    Article  Google Scholar 

  16. 16.

    F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel, M.K. Nazeeruddin, Nano Lett. 7, 3189 (2007)

    Article  Google Scholar 

  17. 17.

    S. Meng, J. Ren, E. Kaxiras, Nano Lett. 8(10), 3266 (2008)

    Article  Google Scholar 

  18. 18.

    M. Gratzel, Chem. Lett. 34, 8–13 (2005)

    Article  Google Scholar 

  19. 19.

    N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, J. Phys. Chem. B 101, 9342 (1997)

    Article  Google Scholar 

  20. 20.

    S.C. Hao, J.H. Wu, Y.F. Huang, J.M. Lin, Sol. Energy 80, 209 (2006)

    Article  Google Scholar 

  21. 21.

    K. Wongcharee, V. Meeyoo, S. Chavadej, Sol. Energy Mater. Sol. Cells 91, 566 (2007)

    Article  Google Scholar 

  22. 22.

    W.M. Chapbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, D.L. Officer, J. Phys. Chem. C 111, 11760 (2007)

    Article  Google Scholar 

  23. 23.

    H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115, 216 (2014)

    Article  Google Scholar 

  24. 24.

    J.B. Harbone, 3rd edn. (Springer, India Pvt. Ltd., New Delhi, 1998) p. 179

  25. 25.

    J.H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.E. Moser, C. Yi, M.K. Nazeeruddin, M. Grätzel, Nat. Commun. 17(3), 631 (2012)

    Article  Google Scholar 

  26. 26.

    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21(41), 4087 (2009)

    Article  Google Scholar 

  27. 27.

    Y. Diamant, S. Chappel, S.G. Chen, O. Melamed, A. Zaban, Coord. Chem. Rev. 248, 1271 (2004)

    Article  Google Scholar 

  28. 28.

    B. Vishwanathan, M.A. Scibioh, 1st edn. (Narosa Publishing house, New Delhi, 2014)

  29. 29.

    A.A. Granovsky, PC Gamess/Firefly version 7.1 G, http://classic.chem.msu.su/gran/Gamess/index

  30. 30.

    N. Santhanamoorthi, C.M. Lo, J.C. Jiang, J. Phys. Chem. Lett. 4, 524 (2013)

    Article  Google Scholar 

  31. 31.

    X. Wang, L. Wang, Z. Wang, Y. Wang, N. Tamai, Z. Hong, J. Kido, J. Phys. Chem. C 117, 804 (2013)

    Article  Google Scholar 

  32. 32.

    S.S. Khadatare, A.P. Ware, S. Salunk-Gawali, S.R. Jadkar, H.M. Pathan, RSC Adv. 5, 17647 (2015)

    Article  Google Scholar 

  33. 33.

    G. Calogero, G.D. Marco, Sol. Energy Mater. Sol. Cells 92, 1341 (2008)

    Article  Google Scholar 

  34. 34.

    X. Wang, J. Xiang, P. Wang, Y. Koyama, S. Yanagida, Y. Wad, K. Hamada, S. Sasaki, H. Tamiaki, Chem. Phys. Lett. 408, 409 (2005)

    Article  Google Scholar 

  35. 35.

    E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, O. Kurita, Sol. Energy 81, 512 (2007)

    Article  Google Scholar 

  36. 36.

    M. Iraj, M. Kolahdouz, E. Asl-Soleimani, E. Esmaeili, Z. Kolahdouz, J. Mater. Sci. (2016). doi:10.1007/s10854-016-4591-5

    Google Scholar 

  37. 37.

    E. Galoppini, Coord. Chem. Rev. 248, 1283 (2004)

    Article  Google Scholar 

  38. 38.

    M. Kimura, H. Nomoto, N. Masaki, S. Mori, Angew. Chem. Int. Edit. 51, 4371 (2012)

    Article  Google Scholar 

  39. 39.

    G.S. Selopal, H. Wu, J. Lu, Y. Chang, M. Wang, A. Vomiero, I. Concina, E. Diau, Sci. Rep. (2016). doi:10.1038/srep18756

    Google Scholar 

  40. 40.

    N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, D. Velauthapillai, J. Sol-Gel Sci. Technol. 66(2), 212 (2013)

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to D. R. Shinde or H. M. Pathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 342 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shinde, D.R., Tambade, P.S., Gadave, K.M. et al. Dye-sensitised solar cells with a naturally occurring pigment lycopene as a photosensitiser for zirconium dioxide: an experimental and theoretical study. J Mater Sci: Mater Electron 28, 11311–11316 (2017). https://doi.org/10.1007/s10854-017-6923-5

Download citation


  • Lycopene
  • High Occupied Molecular Orbital
  • Lower Unoccupied Molecular Orbital
  • High Occupied Molecular Orbital
  • Lower Unoccupied Molecular Orbital