Advertisement

Dye-sensitised solar cells with a naturally occurring pigment lycopene as a photosensitiser for zirconium dioxide: an experimental and theoretical study

  • D. R. ShindeEmail author
  • P. S. Tambade
  • K. M. Gadave
  • K. S. Pawar
  • Mu Naushad
  • H. M. PathanEmail author
Article

Abstract

In the present study, we investigated the prospect of utilization lycopene in a dye-sensitised solar cell (DSSC) with zirconium dioxide (ZrO2) as the photoanode. Carotenoids were extracted from the carrots in petroleum ether and then lycopene was isolated from the extract by column chromatographic separation method. The lycopene fraction of a column elute was identified using ultraviolet–visible spectroscopy. Energies of HOMO and LUMO levels of lycopene were theoretically calculated using Firefly at B3LYP/6-311G (d, p). ZrO2 was purchased from Sigma–Aldrich. It was characterised using powder X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. A ZrO2 film on fluorine-doped tin oxide conducting glass plate was prepared by the doctor blading technique followed by annealing at 450 °C in air for 1 h and then sensitised with lycopene. The sandwich type DSSC was fabricated and the current–voltage characteristics were investigated.

Keywords

Lycopene High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10854_2017_6923_MOESM1_ESM.docx (342 kb)
Supplementary material 1 (DOCX 342 KB)

References

  1. 1.
    I.C. Flores, J.N. de Freitas, C. Longo, M.A. De Paoli, H. Winnischofer, A.F. Nogueira, J. Photochem. Photobiol. 1899(2–3), 153 (2007)CrossRefGoogle Scholar
  2. 2.
    N. Kakuta, T. Oku, A. Suzuki, K. Kikuchi, S. Kikuchi, J. Ceramic Process. Res 13(1), 28 (2012)Google Scholar
  3. 3.
    P. Ekanayake, R. Zain, M. Iskandar, K. Tennakoon, S. Yoshikawa, R. Senadeera, Solar Asia 2011 International Conference 246 (2011)Google Scholar
  4. 4.
    T. T. Win, Y. M. Maung, K. K. K. Soe, Adv. Mater. Res. 550–553, 2036 (2012)CrossRefGoogle Scholar
  5. 5.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Yella, H. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Prog. Photovolt. 15(7), 603 (2007)CrossRefGoogle Scholar
  8. 8.
    F.T. Kong, S.Y. Dai, K.J. Wang, Adv. Optoelectron. 2007, 1–13 (2007)CrossRefGoogle Scholar
  9. 9.
    U. Mehmood, S. Rahman, K. Harrabi, I.A. Hussein, B.V.S. Reddy, Adv. Mater. Sci. Eng. (2014). doi: 10.1155/2014/974782 Google Scholar
  10. 10.
    B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A 333, 264 (2007)CrossRefGoogle Scholar
  11. 11.
    R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B 109, 24254 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Gratzel, J. Photochem. Photobiol. C 4(2), 145 (2003)CrossRefGoogle Scholar
  13. 13.
    B. Tan, Y.Y. Wu, J. Phys. Chem. B 110, 15932 (2006)CrossRefGoogle Scholar
  14. 14.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6(2), 215 (2006)CrossRefGoogle Scholar
  15. 15.
    K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, J. Nano Lett. 7(1), 69 (2007)CrossRefGoogle Scholar
  16. 16.
    F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel, M.K. Nazeeruddin, Nano Lett. 7, 3189 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Meng, J. Ren, E. Kaxiras, Nano Lett. 8(10), 3266 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Gratzel, Chem. Lett. 34, 8–13 (2005)CrossRefGoogle Scholar
  19. 19.
    N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, J. Phys. Chem. B 101, 9342 (1997)CrossRefGoogle Scholar
  20. 20.
    S.C. Hao, J.H. Wu, Y.F. Huang, J.M. Lin, Sol. Energy 80, 209 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Wongcharee, V. Meeyoo, S. Chavadej, Sol. Energy Mater. Sol. Cells 91, 566 (2007)CrossRefGoogle Scholar
  22. 22.
    W.M. Chapbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, D.L. Officer, J. Phys. Chem. C 111, 11760 (2007)CrossRefGoogle Scholar
  23. 23.
    H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115, 216 (2014)CrossRefGoogle Scholar
  24. 24.
    J.B. Harbone, 3rd edn. (Springer, India Pvt. Ltd., New Delhi, 1998) p. 179Google Scholar
  25. 25.
    J.H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.E. Moser, C. Yi, M.K. Nazeeruddin, M. Grätzel, Nat. Commun. 17(3), 631 (2012)CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21(41), 4087 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Diamant, S. Chappel, S.G. Chen, O. Melamed, A. Zaban, Coord. Chem. Rev. 248, 1271 (2004)CrossRefGoogle Scholar
  28. 28.
    B. Vishwanathan, M.A. Scibioh, 1st edn. (Narosa Publishing house, New Delhi, 2014)Google Scholar
  29. 29.
    A.A. Granovsky, PC Gamess/Firefly version 7.1 G, http://classic.chem.msu.su/gran/Gamess/index
  30. 30.
    N. Santhanamoorthi, C.M. Lo, J.C. Jiang, J. Phys. Chem. Lett. 4, 524 (2013)CrossRefGoogle Scholar
  31. 31.
    X. Wang, L. Wang, Z. Wang, Y. Wang, N. Tamai, Z. Hong, J. Kido, J. Phys. Chem. C 117, 804 (2013)CrossRefGoogle Scholar
  32. 32.
    S.S. Khadatare, A.P. Ware, S. Salunk-Gawali, S.R. Jadkar, H.M. Pathan, RSC Adv. 5, 17647 (2015)CrossRefGoogle Scholar
  33. 33.
    G. Calogero, G.D. Marco, Sol. Energy Mater. Sol. Cells 92, 1341 (2008)CrossRefGoogle Scholar
  34. 34.
    X. Wang, J. Xiang, P. Wang, Y. Koyama, S. Yanagida, Y. Wad, K. Hamada, S. Sasaki, H. Tamiaki, Chem. Phys. Lett. 408, 409 (2005)CrossRefGoogle Scholar
  35. 35.
    E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, O. Kurita, Sol. Energy 81, 512 (2007)CrossRefGoogle Scholar
  36. 36.
    M. Iraj, M. Kolahdouz, E. Asl-Soleimani, E. Esmaeili, Z. Kolahdouz, J. Mater. Sci. (2016). doi: 10.1007/s10854-016-4591-5 Google Scholar
  37. 37.
    E. Galoppini, Coord. Chem. Rev. 248, 1283 (2004)CrossRefGoogle Scholar
  38. 38.
    M. Kimura, H. Nomoto, N. Masaki, S. Mori, Angew. Chem. Int. Edit. 51, 4371 (2012)CrossRefGoogle Scholar
  39. 39.
    G.S. Selopal, H. Wu, J. Lu, Y. Chang, M. Wang, A. Vomiero, I. Concina, E. Diau, Sci. Rep. (2016). doi: 10.1038/srep18756 Google Scholar
  40. 40.
    N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, D. Velauthapillai, J. Sol-Gel Sci. Technol. 66(2), 212 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Prof. Ramkrishna More CollegePuneIndia
  2. 2.Advanced Physics Laboratory, Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations