Laterally grown show better performance: ZnO nanorods network based field effect transistors

  • Ashish Kumar
  • Tejendra Dixit
  • Kshitij Bhargava
  • I. A. Palani
  • Vipul Singh


In this work, ZnO based field effect transistors have been demonstrated using self-aligned nanorods (NRs) network synthesized through a facile hydrothermal route. To control the alignment and orientation of nanorods two additives viz. Potassium Permanganate (KMnO4) and Potassium Dichromate (K2Cr2O7) were added into the precursor solution. The effect of additive was studied through structural and optical characterization of nanorods. Further, these nanorods were used as an active layer in field effect transistors (FETs) and the estimated field effect mobility and current on/off ratio of the devices were 0.56 × 10−4 cm2/V s and 10 for vertically aligned and 9.04 cm2/V s and 6 × 103 for laterally aligned NRs network respectively. It was observed that the transport properties of charges are associated with the alignment, size, interface junctions of NRs/NRs or NRs/electrode and trap defects/states on the surface. The possible mechanism of charge transport in network path has been systematically discussed.


Seed Layer Field Effect Transistor Drain Current HMTA Field Effect Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge Sophisticated Instrument Centre, IIT Indore for FESEM, XRD, and PL facilities. Further, A. K. would like to thank the Ministry of Human Resource Development (MHRD), India for providing the Teaching Assistantship (TA).


  1. 1.
    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces 7, 14303 (2015)CrossRefGoogle Scholar
  2. 2.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv. Mater. 26, 1541 (2014)CrossRefGoogle Scholar
  3. 3.
    D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, ZnO: growth, doping & processing. Mater. Today 7, 34 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Dixit, A. Kumar, I.A. Palani, V. Singh. Surface-plasmon-mediated red and near infrared emission from Au-coated ZnO/ZnCr2O4 nanocomposites. ScriptaMaterialia 114, 84 (2016)Google Scholar
  5. 5.
    M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, T. Dixit, I.A. Palani, P.R. Sagdeo, V. Singh, Phase transformation and optical properties of annealed hydrothermally synthesized ZnO/ZnCr2O4 nanocomposites. Int. J. Ceram. Technol. 13, 912 (2016)CrossRefGoogle Scholar
  7. 7.
    V. Singh, M. Yano, W. Takashima, K. Kaneto, “Study of Gate Induced Channel in Organic Field Effect Transistors Using Poly(3-hexylthiophene) Films. Jpn. J. Appl. Phys 45, 534 (2011)CrossRefGoogle Scholar
  8. 8.
    V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, K. Kaneto, A comparative study of Al and LiF:Al interfaces with poly(3-hexylthiophene) using bias dependent photoluminescence technique. Org. Electron. 9, 790 (2008)CrossRefGoogle Scholar
  9. 9.
    G. Zhong, K. Kalam, A.S. Al-Shihri, Q. Su, J. Li, G. Du, Low-temperature growth of well-aligned ZnO nanorods/nanowires on flexible graphite sheet and their photoluminescence properties”. Mater. Res. Bull. 47(6), 1467–1470 (2012)CrossRefGoogle Scholar
  10. 10.
    X. Tang, B. Lin, Y. Ge, Ya. Ge, C. Lu, S.V. Savilov, S.M. Aldoshin, H. Xia, LiMn2O4 nanorod arrays: a potential three-dimensional cathode for lithium-ion microbatteries. Mater. Res. Bull. 69, 2 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Chu, J. Su, W. Ahmad, N. Liu, L. Li, Y. Gao, Facile, rapid and in-situ synthesis of ZnO nanoparticle films on Zn wires for fiber dye-sensitized solar cells. Mater. Res. Bull. 66, 244 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Kumar, T. Dixit, I.A. Palani, P.R Sagdeo, V. Singh, Hydrothermally processed photosensitive field effect transistor based on ZnO nanorod networks. J. Electron. Mater. 45(11), (2016). doi: 10.1007/s11664-016-4768-y
  13. 13.
    R. Theissmann, S. Bubel, M. Sanlialp, C. Busch, G. Schierning, R. Schmechel, High performance low temperature solution processed zinc oxide thin film transistor. Thin Solid Film 519, 5623 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Choi, B.Y. Park, K.H. Jung, Luminescence and electrical properties of solution processed ZnO thin films by adding fluorides and annealing atmosphere. Mater. Res. Bull. 46, 810 (2011)CrossRefGoogle Scholar
  15. 15.
    Y.H. Lin, H. Faber, S. Rossbauer, T.D. Anthopoulos, Solution-processed ZnO nanoparticle-based transistors via a room-temperature photochemical conversion process. Appl. Phys. Lett. 102, 193516 (2013)CrossRefGoogle Scholar
  16. 16.
    L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P. Yang, Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535–7543 (2006)CrossRefGoogle Scholar
  17. 17.
    A.S. Dahiya, C. Opoku, C. Oshman, G. Poulin-Vittrant, F. Cayrel, L.P. Hue, D. Alquier, N. Camara, Zinc oxide sheet field-effect transistors. Appl. Phys. Lett. 107, 033105 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Qian, Y. Wang, Y. Fang, L. Gu, R. Lu, J. Sha, High-performance ZnO nanowire field-effect transistor with forming gas treated SiO2 gate dielectrics. J. Appl. Phys. 117, 164308 (2015)CrossRefGoogle Scholar
  19. 19.
    Q.H. Li, Y.X. Liang, Q. Wan, T.H. Wang, Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 85, 6389–6391 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Song, W.K. Hong, S.S. Kwon, T. Lee, Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments. Appl. Phys. Lett. 92, 263109 (2008)CrossRefGoogle Scholar
  21. 21.
    W.Y. Weng, S.J. Chang, C.L. Hsu, T.J. Hsueh. A ZnO-nanowire phototransistor prepared on glass substrates. ACS Appl. Mater. Interfaces. 3, 162 (2011)CrossRefGoogle Scholar
  22. 22.
    P.C. Chang, Z. Fan, C.J. Chien, D. Stichtenoth, C. Ronning, J.C. Lu, High-performance ZnO nanowire field effect transistors. Appl. Phys. Lett. 89, 133113 (2006)CrossRefGoogle Scholar
  23. 23.
    D. Zhenqing, C. Changxin, Z. Yaozhong, W. Liangming, Z. Jing, X. Dong, Z. Yafei, ZnO nanowire network transistors based on a self-assembly method. J. Semicond. 33, 084003 (2012)CrossRefGoogle Scholar
  24. 24.
    H.E. Unalan, Y. Zhang, P. Hiralal, S. Dalal, D. Chu, G. Eda, K.B. Teo, M. Chhowalla, W.I. Milne, G.A. Amaratunga, Zinc oxide nanowire networks for macroelectronic devices. Appl. Phys. Lett. 94, 163501 (2009)CrossRefGoogle Scholar
  25. 25.
    S.H. Ko, I. Park, H. Pan, N. Misra, M.S. Rogers, C.P. Grigoropoulos, A.P. Pisano, ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Appl. Phys. Lett. 92, 154102 (2008)CrossRefGoogle Scholar
  26. 26.
    S.M. Peng, Y.K. Su, L.W. Ji, S.J. Young, C.N. Tsai, W.C. Chao, Z.S. Chen, C.Z. Wu, Semitransparent field-effect transistors based on ZnO nanowire networks. IEEE Electron Device Lett. 32, 533 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Thiemann, M. Gruber, I. Lokteva, J. Hirschmann, M. Halik, J. Zaumseil, High-mobility ZnO nanorod field-effect transistors by self-alignment and electrolyte-gating. ACS Appl. Mater. Interfaces. 5, 1656 (2013)CrossRefGoogle Scholar
  28. 28.
    B. Sun, H. Sirringhaus, Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J. Am. Chem. Soc. 128, 16231 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Sun, H. Sirringhaus, Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408 (2005)CrossRefGoogle Scholar
  30. 30.
    T. Dixit, A. Bilgaiyan, I.A. Palani, D. Nakamura, T. Okada, V. Singh, Influence of potassium permanganate on the anisotropic growth and enhanced UV emission of ZnO nanostructures using hydrothermal process for optoelectronic applications. J. Sol–Gel. Sci. Technol. 75, 693 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Dixit, I.A. Palani, V. Singh, Investigation on the influence of dichromate ion on the ZnO nano-dumbbells and ZnCr2O4 nano-walls. J. Mater. Sci. 26, 821 (2015)Google Scholar
  32. 32.
    J. Demel, J. Pleštil, P. Bezdicka, P. Janda, M. Klementová, K. Lang, Few-layer ZnO nanosheets: preparation, properties, and films with exposed {001} facets. J. Phys. Chem. C 115, 24702 (2011)CrossRefGoogle Scholar
  33. 33.
    A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah. Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)CrossRefGoogle Scholar
  34. 34.
    B. Wang, J. Iqbal, X. Shan, G. Huang, H. Fu, R. Yu, D. Yu, Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Mater. Chem. Phys. 113, 103 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Singh, E.S. Kumar, M.R. Rao, Microstructural, optical and electrical properties of Cr-doped ZnO. Scripta Mater. 58, 866 (2008)CrossRefGoogle Scholar
  36. 36.
    Y. Caglar, M. Caglar, S. Ilican, S. Aksoy, F. Yakuphanoglu. Effect of channel thickness on the field effect mobility of ZnO-TFT fabricated by sol–gel process. J. Alloys Compd. 621, 189 (2015)CrossRefGoogle Scholar
  37. 37.
    W.K. Hong, G. Jo, S.S. won, S. Song, T. Lee, Electrical properties of surface-tailored ZnO nanowire field-effect transistors. IEEE Trans. Electron. Devices 55, 3020 (2008)CrossRefGoogle Scholar
  38. 38.
    W.K. Hong, D.K. Hwang, I.K. Park, G. Jo, S. Song, S.J. Park, T. Lee, B.J. Kim, E.A. Stach, Realization of highly reproducible ZnO nanowire field effect transistors with n-channel depletion and enhancement modes. Appl. Phys. Lett. 90, 243103 (2007)CrossRefGoogle Scholar
  39. 39.
    C.S. Li, N.Y. Li, Y.L. Wu, B.S. Ong, R.O. Loutfy, Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors. J. Mater. Chem. 19, 1626 (2009)CrossRefGoogle Scholar
  40. 40.
    F.F. Vidor, G.I. Wirth, U. Hilleringmann, Low temperature fabrication of a ZnO nanoparticle thin-film transistor suitable for flexible electrodes. Microelectron. Reliab. 54, 2760 (2014)CrossRefGoogle Scholar
  41. 41.
    E.A. Meulenkamp, Electron transport in nanoparticulate ZnO films. J. Phys. Chem. B 103, 7831 (1999)CrossRefGoogle Scholar
  42. 42.
    W.K. Hong, J.I. Sohn, D.K. Hwang, S.S. Kwon, G. Jo, S. Song, S.M. Kim, H.J. Ko, S.J. Park, M.E. Welland, T. Lee, Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. Nano Lett. 8, 950 (2008)CrossRefGoogle Scholar
  43. 43.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Adv. Mater. 26, 1541 (2014)CrossRefGoogle Scholar
  44. 44.
    M.Y. Chuang, Y.C. Chen, Y.K. Su, C.H. Hsiao, C.S. Huang, J.J. Tsai, H.C. Yu. Negative differential resistance behavior and memory effect in laterally bridged ZnO nanorods grown by hydrothermal method. ACS Appl. Mater. Interfaces 6, 5432 (2014)CrossRefGoogle Scholar
  45. 45.
    P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non-ohmic) feature. J. Eur. Ceram. Soc. 28, 505 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Choe, W. Park, J.W. Kang, S. Jeong, W.K. Hong, B.H. Lee, S.J. Park, T. Lee, Investigation of threshold voltage instability induced by gate bias stress in ZnO nanowire field effect transistors. Nanotechnology 23, 485201 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ashish Kumar
    • 1
  • Tejendra Dixit
    • 1
  • Kshitij Bhargava
    • 1
  • I. A. Palani
    • 2
    • 3
  • Vipul Singh
    • 1
    • 3
  1. 1.Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical EngineeringIIT IndoreIndoreIndia
  2. 2.Mechatronics and Instrumentation Lab, Department of Mechanical EngineeringIIT IndoreIndoreIndia
  3. 3.Centre of Material Science and EngineeringIIT IndoreIndoreIndia

Personalised recommendations