Advertisement

Investigation of structural, morphological and electrical properties of nanocomposite based on SnO2 nanoparticles filled polypyrrole matrix

  • R. D. Sakhare
  • Y. H. Navale
  • S. T. Navale
  • V. B. PatilEmail author
Article
  • 245 Downloads

Abstract

A facile solid-state approach was used to prepare polypyrrole-tin oxide (PPy–SnO2) (0–50 wt%) hybrid nanocomposites (NCs). The structure and morphology of the hybrid NCs were characterized using X-ray photoelectron spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet–visible (UV–Vis), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurement techniques. Two point-probe method was used to study electrical transport properties of PPy–SnO2 hybrid NCs. The structures of SnO2 as well as PPy–SnO2 hybrid NCs (0–50%) were confirmed from the XRD patterns. The FESEM surface images of the hybrid NCs reveal uniform distribution of the SnO2 nanoparticles (NPs) in the PPy matrix. The characteristic FTIR peaks of PPy and UV–Vis absorption wavelength shift to a higher wavenumber and wavelength sides in PPy–SnO2 hybrid NCs, which are attributed to interaction of SnO2 NPs with PPy molecular chains. The negatively charged O2− surface of SnO2-NPs transfers electrons to polypyrrole which is in its highly reduced form. A strong localization of charge carriers in the reduced polypyrrole makes PPy–SnO2 hybrid NCs highly resistive.

Keywords

SnO2 Polypyrrole Stannic Chloride SnO2 Nanoparticles Chemical Oxidative Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Prof. V. B. Patil would like to thank DAE-BRNS for the financial support through scheme no. 34/14/21/2015-BRNS and RUSA Maharashtra for the financial support through scheme no. RUSA/R&I/2016/267.

References

  1. 1.
    M. Taunk, A. Kapil, S. Chand, Synthesis and electrical characterization of self-supported conducting polypyrrole-poly(vinylidene fluoride) composite films. Open Macromol. J. 2, 74–79 (2008)CrossRefGoogle Scholar
  2. 2.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, PPy/α-Fe2O3 hybrid nanocomposites: effect of CSA doping on structural, morphological, optical and electrical transport properties. J. Mater. Sci. Mater. Electron. 25, 65–75 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Anuar, S. Murali, A. Fariz, H.N.M. Mahmud Ekramul, Conducting polymer/clay composites: preparation and characterization. Mater. Sci. 10, 255 (2004)Google Scholar
  4. 4.
    A. Kassim, Z.B. Basar, H.N.M.E. Mahmud, Effects of preparation temperature on the conductivity of polypyrrole conducting polymer. Chem. Sci. 114, 155–162 (2002)CrossRefGoogle Scholar
  5. 5.
    S.R. Nalage, A.T. Mane, R.C. Pawar, C.S. Lee, V.B. Patil, Polypyrrole-NiO hybrid nanocomposites films: a highly selective, sensitive and reproducible NO2 sensors. Ionics 20, 1607–1616 (2014)CrossRefGoogle Scholar
  6. 6.
    A.B. Kaiser, Electronics transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1–49 (2001)CrossRefGoogle Scholar
  7. 7.
    R. McNeill, R. Siudak, J.H. Wardlaw, D.E. Weiss, Electronic conduction in polymers. I. The chemical structure of polypyrrole. Aust. J. Chem. 16(6), 1056–1075 (1963)CrossRefGoogle Scholar
  8. 8.
    C. Karunakaran, S. Sakthi Raadha, P. Gomathisankar, Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles. J. Alloy. Comd. 549, 269–275 (2013)CrossRefGoogle Scholar
  9. 9.
    A.P. Alivisator, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)CrossRefGoogle Scholar
  10. 10.
    R.D. Sakhare, G.D. Khuspe, S.T. Navale, R.N. Mulik, M.A. Chougule, R.C. Pawar, C.S. Lee, S. Sen, V.B. Patil, Nanocrystalline SnO2 thin films: structural, morphological, electrical transport and optical studies. J. Alloy. Compd. 563, 300–306 (2013)CrossRefGoogle Scholar
  11. 11.
    H.W. Kim, S.H. Shim, Synthesis and characteristics of SnO2 needle-shaped nanostructures. J. Alloy. Compd. 426, 286–289 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Chen, Y. Tian, S. Li, H. Zheng, W. Zhang, Electrodeposition of arborous structure nanocrystalline SnO2 and application in flexible dye-sensitized solar cells. J. Alloy. Compd. 515, 57–62 (2012)CrossRefGoogle Scholar
  13. 13.
    D.N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Sonochemical synthesis of mesoporous tin oxide. Langmuir 18, 4160–4164 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Uchiyama, R. Nagao, H. Kozuka, “Photoelectrochemical properties of ZnO–SnO2 films prepared by sol–gel method”. J. Alloy. Compd. 554, 122–126 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Tao, A.M. Glushenkov, H. Hu, Q. Chen, Y. Chen, Ball milled SnO2: a modified vapor source for growing nanostructures. J. Alloy. Compd. 504 S, S315–S318 (2010)CrossRefGoogle Scholar
  16. 16.
    M.J. Madou, S.Y. Morison, Chemical Sensing with Solid State Devices. (Academic Press, San Diego, 1989)Google Scholar
  17. 17.
    J. He, Q.Z. Cai, F. Xiao, X.W. Li, W. Sun, X. Zhao, Plasma electrolytic oxidation preparation and characterization of SnO2 film. J. Alloy. Compd. 509, L11–L13 (2011)CrossRefGoogle Scholar
  18. 18.
    W. Dazhi, W. Shulin, C. Jun, Z. Suyuan, L. Fangqing, Microstructure of SnO2. Phys. Rev. B 49(20), 14282–14285 (1994)CrossRefGoogle Scholar
  19. 19.
    P.G. Li, M. Lei, W.H. Tang, X. Guo, X. Wang, Facile route to straight SnO2 nanowires and their optical properties. J. Alloy. Compd. 477, 515–518 (2009)CrossRefGoogle Scholar
  20. 20.
    X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001)CrossRefGoogle Scholar
  21. 21.
    S.H. Mohamed, SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J. Alloy. Compd. 510, 119–124 (2012)CrossRefGoogle Scholar
  22. 22.
    G.D. Khuspe, R.D. Sakhare, S.T. Navale, M.A. Chougule, R.N. Mulik, R.C. Pawar, C.S. Lee, V.B. Patil, Nanostructured SnO2 thin film for NO2 gas sensing applications. Ceram. Int. 39, 8673–8679 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Cui, J. Shen, F. Cheng, Z. Tao, J. Chen, SnO2 nanoparticles @ polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J. Power Sources 196, 2195–2201 (2011)CrossRefGoogle Scholar
  24. 24.
    L. Yuan, J. Wang, S.Y. Chew, J. Chen, Z.P. Guo, L. Zhao, K. Konstantinov, H.K. Liu, Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J. Power Sources 174, 1183–1187 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Maeda, S.P. Ames, Preparation and characterization of polypyrrole-tin(IV) oxide, nanocomposite colloids. Chem. Mater. 7, 171–178 (1995)CrossRefGoogle Scholar
  26. 26.
    J. Huang, J.A. Moore, J.H. Acquaye, R.B. Kaner, Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38, 317 (2005)CrossRefGoogle Scholar
  27. 27.
    S.R. Nalage, S.T. Navale, V.B. Patil, Polypyrrole-NiO hybrid nanocomposite: structural, morphological, optical and electrical transport studies. Measurement 46, 3268–3275 (2013)CrossRefGoogle Scholar
  28. 28.
    B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, V.B. Patil, Novel method for fabrication of polyaniline-CdS sensor for H2S gas detection. Measurements 45, 94–100 (2012)Google Scholar
  29. 29.
    E. Pretsch, P. Buhlmann, M. Badertscher, Structure Determination of Organic Compounds Tables of Spectral Data, 4th Revised and Enlarged Edition. (Springer, Berlin), p. 283Google Scholar
  30. 30.
    A.T. Mane, S.T. Navale, R.C. Pawar, C.S. Lee, V.B. Patil, Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites. Synth. Met. 199, 187–195 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Joshi, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, S.A. Gangal, ZnO-nanowires modified polypyrrole films as highly selective and sensitive chlorine sensors. Appl. Phys. Lett. 94, 103115 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Ge, G. Qi, E.T. Kang, K.G. Neoh, Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy. Polymer 35, 504 (1994)CrossRefGoogle Scholar
  33. 33.
    S.K. Tripathy, A. Mishra, S.K. Jha, R. Wahab, A.A. Al-Khedhairy, Microwave assisted hydrothermal synthesis of mesoporous SnO2 nanoparticles for ethanol sensing and degradation. J. Mater. Sci.: Mater. Electron. 24, 2082–2090 (2013)Google Scholar
  34. 34.
    A.R. Phani, X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor. Appl. Phys. Lett. 71, 2358 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • R. D. Sakhare
    • 1
  • Y. H. Navale
    • 1
  • S. T. Navale
    • 1
  • V. B. Patil
    • 1
    Email author
  1. 1.Functional Materials Research Laboratory, School of Physical SciencesSolapur UniversitySolapurIndia

Personalised recommendations