High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films

Abstract

A transparent planar electrode from thermally reduced graphene oxide (TRGO) incorporated with a photoconductive thin film of zinc oxide (ZnO) was successfully employed in a visible-blind ultraviolet (UV) photodetector. The TRGO layer was obtained from thermal reduction of drop-cast GO layer at the temperature of 400 °C after which the electrical resistance of layer decreased four orders of magnitude to ~100 Ω. Then a pure and uniform ZnO thin film with the thickness of ~80 nm was sputtered on the TRGO layer. High UV absorption and visible transparency with the average transmittance of 92% in the range of 400–800 nm (T400−800) were obtained for the ZnO thin film. Moreover, the TRGO layer was highly capable in collecting photogenerated electrons from ZnO thin film and efficient transport of charge carriers to the contact electrodes. The ZnO/TRGO device showed an ideal Ohmic behavior and high visible-light transparency with T400−800 = 80%. Furthermore, the results of current–time measurements with cyclic exposure of the device to UV light indicated stable ON/OFF switching states and highly repeatable photoresponse.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Y. Fu, C. Tian, F. Liu, L. Wang, H. Yan, B. Yang, Nano Res. 9, 3364 (2016)

    Article  Google Scholar 

  2. 2.

    M.A. Brown, M.S. Crosser, M.R. Leyden, Y. Qi, E.D. Minot, Appl. Phys. Lett. 109, 9 (2016)

    Article  Google Scholar 

  3. 3.

    P. Fan, J. Chen, J. Yang, F. Chen, M. Zhong, J. Nanopart. Res. 19, 36 (2017)

    Article  Google Scholar 

  4. 4.

    H. Jang, Y.J. Park, X. Chen, T. Das, M. Kim, J. Ahn, Adv. Mater. 28, 4184 (2016)

    Article  Google Scholar 

  5. 5.

    K. Lee, Y. Yoon, Y. Cho, S. Lee, Y. Shin, H. Lee, H. Lee, ACS Nano 10, 6799 (2016)

    Article  Google Scholar 

  6. 6.

    A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. Mater. Electron. 27, 8221 (2016)

    Article  Google Scholar 

  7. 7.

    M. Esmaeilpour Ganji, A.M. Bazargan, M. Keyanpour-rad, M.A. Bahrevar, Funct. Mater. Lett. 3, 141 (2010)

    Article  Google Scholar 

  8. 8.

    Y. Wang, Y. Chen, W. Zhao, L. Ding, L. Wen, H. Li, F. Jiang, J. Su, L. Li, N. Liu, Y. Gao, Nano-Micro Lett. 9, 11 (2017)

    Article  Google Scholar 

  9. 9.

    W. Ko, S. Lee, N. Myoung, J. Hong, J. Mater. Chem. C 4, 142 (2016)

    Article  Google Scholar 

  10. 10.

    H. Chang, Z. Sun, K. Ho, X. Tao, F. Yan, W. Kwok, Z. Zheng, Nanoscale 3, 258 (2011)

    Article  Google Scholar 

  11. 11.

    H. Liu, Q. Sun, J. Xing, Z. Zheng, Z. Zhang, Z. Lü, K. Zhao, ACS Appl. Mater. Interfaces 7, 6645 (2015)

    Article  Google Scholar 

  12. 12.

    D. Son, H. Yang, T. Kim, W. Park, Compos. Part B-Eng. 69, 154 (2015)

    Article  Google Scholar 

  13. 13.

    A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. Mater. Electron. 28, 1419 (2017)

    Article  Google Scholar 

  14. 14.

    D. Pal, A. Mathur, A. Singh, J. Vac. Sci. Technol. A 35, 1 (2016)

    Google Scholar 

  15. 15.

    B. Rahal, B. Boudine, A. Khantoul, M. Sebais, O. Halimi, Optik 127, 6943 (2016)

    Article  Google Scholar 

  16. 16.

    I. Bouanane, A. Kabir, D. Boulainine, S. Zerkout, G. Schmerber, B. Boudjema, J. Electron. Mater. 45, 3307 (2016)

    Article  Google Scholar 

  17. 17.

    M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, Appl. Phys. Lett. 93, 123309 (2008)

    Article  Google Scholar 

  18. 18.

    Y.H. Leung, Z.B. He, L.B. Luo, C.H.A. Tsang, N.B. Wong, W.J. Zhang, S.T. Lee, Appl. Phys. Lett. 96, 053102 (2010)

    Article  Google Scholar 

  19. 19.

    W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, J. Huang, Opt. Express 24, 8411 (2016)

    Article  Google Scholar 

  20. 20.

    E. Guo, H. Lu, M. He, J. Xing, K. Jin, G. Yang, Appl. Opt. 49, 2557 (2010)

    Article  Google Scholar 

  21. 21.

    V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, E.H. Sargent, Adv. Mater. 28, 7264 (2016)

    Article  Google Scholar 

  22. 22.

    A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. Mater. Electron. 28, 2962 (2017)

    Article  Google Scholar 

  23. 23.

    R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, V. Gupta, RSC Adv. 6, 56149 (2016)

    Article  Google Scholar 

  24. 24.

    Q. Zhu, C. Xie, H. Li, Q. Yang, J. Alloy Compd. 585, 267 (2014)

    Article  Google Scholar 

  25. 25.

    D. Ye, Z. Mei, H. Liang, L. liu, Y. Zhang, J. Li, Y. Liu, C. Gu, X. Du, Sci. Rep. 6, 26169 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Sharif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazargan, A.M., Sharif, F., Mazinani, S. et al. High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films. J Mater Sci: Mater Electron 28, 11108–11113 (2017). https://doi.org/10.1007/s10854-017-6896-4

Download citation

Keywords

  • Reduce Graphene Oxide
  • Cyclic Exposure
  • Energy Dispersive Spectrometer Spectrum
  • Efficient Electron Transport
  • Thermally Reduce Graphene Oxide