Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5) x TiO3 ceramics


A correlation between structure and vibrational properties related to a ferroelectric to paraelectric phase transition in perovskite Pb(1−x)(Na0.5Sm0.5) x TiO3 (0 ≤ x ≤ 0.5) (PNST-x) polycrystalline powders is discussed. Substitution leads to reduction of tetragonality which is associated with a shift of the phase transition to lower temperatures. The nature of the phase transition gets diffused with increasing substitution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    E.C. Paris, MFC Gurgel, M.R. Joya, G.P. Casali, C.O. Paiva-Santos, T.M. Boschi, P.S. Pizani, J.A. Varela, E. Longo, Structural deformation monitored by vibrational properties and orbital modeling in (Pb,Sm)TiO3 systems. J. Phys. Chem. Solids 71, 12–17 (2010)

    Article  Google Scholar 

  2. 2.

    J. Hlinka, M. Kempa, J. Kulda, P. Bourges, A. Kania, J. Petzelt, Lattice dynamics of ferroelectric PbTiO3 by inelastic neutron scattering. Phys. Rev. B 73, 140101 (2006)

    Article  Google Scholar 

  3. 3.

    I. Tomeno, J.A. Fernandez-Baca, K.J. Marty, K. Oka, Y. Tsunoda, Simultaneous softening of acoustic and optical modes in cubic PbTiO3. Phys. Rev. B 86, 134306 (2012)

    Article  Google Scholar 

  4. 4.

    H. Shigematsu, H. Nakadaira, T. Futatsugi, T. Matsui, Ti-isotope effect on ferroelectric phase transition of PbTiO3 studied by heat capacity measurement. Thermochim. Acta 352–353, 43–46 (2000)

    Article  Google Scholar 

  5. 5.

    N. Jaouen, A.C. Dhaussy, J.P. Itié, A. Rogalev, S. Marinel, Y. Joly, High-pressure dependent ferroelectric phase transition in lead titanate. Phys. Rev. B 75, 224115 (2007)

    Article  Google Scholar 

  6. 6.

    Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, D. Xiao, Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1–xLaxFeO3 ceramics. J. Alloys Compd. 546, 57–62 (2013)

    Article  Google Scholar 

  7. 7.

    G.S. Szabó, R.E. Cohen, H. Krakauer, First-principles study of piezoelectricity in PbTiO3. Phys. Rev. Lett. 80, 4321 (1998)

    Article  Google Scholar 

  8. 8.

    J. Chen, H. Shi, G. Liu, J. Cheng, S. Dong, Temperature dependence of dielectric, piezoelectric and elastic properties of BiScO3–PbTiO3 high temperature ceramics with morphotropic phase boundary (MPB) composition. J. Alloys Compd. 537, 280–285 (2012)

    Article  Google Scholar 

  9. 9.

    D.D. Shah, P.K. Mehta, M.S. Desai, C.J. Panchal, Origin of giant dielectric constant in Ba[(Fe1–xCox)1/2Nb1/2]O3. J. Alloys Compd. 509, 1800–1808 (2011)

    Article  Google Scholar 

  10. 10.

    J.S. Forrester, J.S. Zobec, D. Phelan, E.H. Kisi, Synthesis of PbTiO3 ceramics using mechanical alloying and solid state sintering. J. Solid State Chem. 177, 3553–3559 (2004)

    Article  Google Scholar 

  11. 11.

    M. Alguero, P. Ramos, R. Jimenez, H. Amorin, E. Vila, A. Castro, High temperature piezoelectric BiScO3–PbTiO3 synthesized by mechanochemical methods. Acta Mater. 60, 1174–1183 (2012)

    Article  Google Scholar 

  12. 12.

    Z. Wu, R.E. Cohen, Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Phys. Rev. Lett. 95, 037601 (2005)

    Article  Google Scholar 

  13. 13.

    A.A. Bokov, Recent advances in diffuse ferroelectric phase transitions. Ferroelectrics 131, 49–55 (1992)

    Article  Google Scholar 

  14. 14.

    A.A. Bokov, L.A. Shpak, I.P. Rayevsky, Diffuse phase transition in Pb(Fe0.5Nb0.5)O3-based solid solutions. J. Phys. Chem. Solids 54, 495–498 (1993)

    Article  Google Scholar 

  15. 15.

    N. Abdelmoula, H. Chaabane, H. Khemakhem, R. Vonder Mühll, A. Simon, x(Sm0.5Na0.5)xTiO3. Solid State Sci 8, 880–887 (2006)

    Article  Google Scholar 

  16. 16.

    D.I. Woodward, I.M. Reaney, Electron diffraction of tilted perovskites. Acta Crystallogr. Sect. B 61, 387–399 (2005)

    Article  Google Scholar 

  17. 17.

    W. Zhao, R. Zuo, F. Li, L. Li, Structural, dielectric, ferroelectric and strain properties in CaZrO3-modified Bi(Mg0.5Ti0.5)O3–PbTiO3 solid solutions. J. Alloys Compd. 591, 218–223 (2014)

    Article  Google Scholar 

  18. 18.

    X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

  19. 19.

    W. Zhong, R.D. King-Smith, D. Vanderbilt, Giant LO-TO Splitting in Perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994)

    Article  Google Scholar 

  20. 20.

    B.K. Mani, C.M. Chang, I. Ponomareva, Atomistic study of soft-mode dynamics in PbTiO3. Phys. Rev. B 88, 064306 (2013)

    Article  Google Scholar 

  21. 21.

    G. Burns, B.A. Scott, Lattice modes in ferroelectric perovskites: PbTiO3. Phys. Rev. B 7, 3088 (1973)

    Article  Google Scholar 

  22. 22.

    C.M. Foster, Z. Li, M. Grimsditch, S.K. Chan, D.J. Lam, Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3. Phys. Rev. B 48, 10160 (1993)

    Article  Google Scholar 

  23. 23.

    J.A. Sanjurjo, E.L. Cruz, G. Burns, High-pressure Raman study of zone-center phonons in PbTiO3. Phys. Rev. B 28, 7260 (1983)

    Article  Google Scholar 

  24. 24.

    C. Sun, J. Wang, P. Hu, M.J. Kim, X. Xing, Effects of Al substitution on the spontaneous polarization and lattice dynamics of the PbTi1–xAlxO3. Dalton Trans. 39, 5183 (2010)

    Article  Google Scholar 

  25. 25.

    E.C. Paris, MFC Gurgel, T.M. Boschi, M.R. Joya, P.S. Pizani, A.G. Souza, E.R. Leite, J.A. Varela, E. Longo, Investigation on the structural properties in Er-doped PbTiO3 compounds: a correlation between experimental and theoretical results. J. Alloys Compd. 462, 157–163 (2008)

    Article  Google Scholar 

  26. 26.

    L. Sun, Y.F. Chen, L. He, C.Z. Ge, D.S. Ding, T. Yu, M.S. Zhang, N.B. Ming, Phonon-mode hardening in epitaxial PbTiO3 ferroelectric thin films. Phys. Rev. B 55, 12218 (1997)

    Article  Google Scholar 

  27. 27.

    S.M. Cho, H.M. jang, Softening and mode crossing of the lowest-frequency A1(transverse-optical) phonon in single-crystal PbTiO3. Appl. Phys. Lett. 76, 3014–3016 (2000)

    Article  Google Scholar 

  28. 28.

    D. Wu, A. Li, N. Ming, Dielectric characterization of Bi3.25La0.75Ti3O12 thin films. Appl. Phys. Lett. 84, 4505–4507 (2004)

    Article  Google Scholar 

  29. 29.

    H. Gu, Y. Hu, J. You, Z. Hu, Y. Yuan, T. Zhang, Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J. Appl. Phys. 101, 024319 (2007)

    Article  Google Scholar 

  30. 30.

    S. Bhaskar, S.B. Majumder, R.S. Katiyara, Diffuse phase transition and relaxor behavior in (PbLa)TiO3 thin films. Appl. Phys. Lett. 80, 3997 (2002)

    Article  Google Scholar 

  31. 31.

    A. Singh, R. Chatterjee, Multiferroic properties of La-Rich BiFeO3-PbTiO3 solid solutions. Ferroelectrics 433, 180 (2012)

    Article  Google Scholar 

  32. 32.

    X.P. Jiang, J.W. Fang, H.R. Zeng, B.J. Chu, G.R. Li, D.R. Chen, Q.R. Yin, The influence of PbZrO3/PbTiO3 ratio on diffuse phase transition of Pb(Zn1/3Nb2/3)O3–PbZrO3–PbTiO3 system near the morphotropic phase boundary. Mater. Lett. 44, 219–222 (2000)

    Article  Google Scholar 

  33. 33.

    T. Nakamura, M. Takashige, Diffuse phase transition and low temperature dielectric constant in PbTiO3. Ferroelectrics 108, 159–164 (1990)

    Article  Google Scholar 

  34. 34.

    J. Chen, Y. Qi, G. Shi, X. Yan, S. Yu, J. Cheng, Diffused phase transition and multiferroic properties of 0.57(Bi1–xLax)FeO3–0.43PbTiO3 crystalline solutions. J. Appl. Phys. 104, 064124 (2008)

    Article  Google Scholar 

  35. 35.

    W. Ji, X. He, W. Cheng, P. Qiu, X. Zeng, B. Xia, D. Wang, Effect of La content on dielectric, ferroelectric and electro-optic properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 transparent ceramics. Ceram. Int 41, 1950–1956 (2015)

    Article  Google Scholar 

  36. 36.

    I.A. Santos, J.A. Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J. Phys. 13, 11733 (2001)

    Google Scholar 

  37. 37.

  38. 38.

    J.F. Scott, Ferroelectrics go bananas. J. Phys. 20, 021001 (2008)

    Google Scholar 

  39. 39.

    A.J. Priyanka, K.J. Pardeep, A.K. Jha, R.K. Kotnala, R.K. Drivedi, Phase transformation and two-mode phonon behavior of (1 – x)[BaZr0.025Ti0.975O3]–(x) [BiFeO3] solid solutions. J. Alloys Compd. 600, 186–192 (2014)

    Article  Google Scholar 

  40. 40.

    A.K. Yadav, P. Rajput, O. Alshammari, M. Khan, Anita, G. Kumar, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1–xFex)O3. J. Alloys Compd. 701, 619–625 (2017)

    Article  Google Scholar 

  41. 41.

    F.A. Kröger, H.J. Vink, in Solid State Physics, ed. by S. Frederick, T. David. Relations Between the Concentrations of Imperfections in Crystalline Solids, vol 3 (Academic Press, New York, 1956), pp. 307–435

    Google Scholar 

  42. 42.

    N. Yuji, M. Ichiro, G. Yu, M. Masaru, Defect control for large remanent polarization in bismuth titanate ferroelectrics—doping effect of higher-valent cations. Jpn. J. Appl. Phys. 39, L1259–L1262 (2000)

    Article  Google Scholar 

  43. 43.

    K. Sunil, K.B.R. Verma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. J. Phys. D 42, 075405 (2009)

    Article  Google Scholar 

Download references


One of the authors Arun Kumar Yadav is grateful to the university Grants Commission to award me fellowship (NFO-2015-17-OBC-UTT-28455).Principle investigator expresses sincere thanks to Indian Institute of Technology, Indore for funding the research and also using the Sophisticated Instrument Centre (SIC) for the research. The authors thank to Mr. Rituraj Sharma for providing the HR Raman facility in IISER Bhopal.

Author information



Corresponding author

Correspondence to Somaditya Sen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 1414 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Anita, Kumar, S. et al. Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5) x TiO3 ceramics. J Mater Sci: Mater Electron 28, 10730–10738 (2017).

Download citation


  • Perovskite
  • Tolerance Factor
  • Diffuse Phase Transition
  • Paraelectric Phase Transition
  • Average Ionic Radius