Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5)xTiO3 ceramics

  • Arun Kumar Yadav
  • Anita
  • Sunil Kumar
  • V. Raghavendra Reddy
  • Parasharam M. Shirage
  • Sajal Biring
  • Somaditya Sen
Article
  • 282 Downloads

Abstract

A correlation between structure and vibrational properties related to a ferroelectric to paraelectric phase transition in perovskite Pb(1−x)(Na0.5Sm0.5)xTiO3 (0 ≤ x ≤ 0.5) (PNST-x) polycrystalline powders is discussed. Substitution leads to reduction of tetragonality which is associated with a shift of the phase transition to lower temperatures. The nature of the phase transition gets diffused with increasing substitution.

Supplementary material

10854_2017_6849_MOESM1_ESM.tif (1.4 mb)
Supplementary material 1 (TIF 1414 KB)

References

  1. 1.
    E.C. Paris, MFC Gurgel, M.R. Joya, G.P. Casali, C.O. Paiva-Santos, T.M. Boschi, P.S. Pizani, J.A. Varela, E. Longo, Structural deformation monitored by vibrational properties and orbital modeling in (Pb,Sm)TiO3 systems. J. Phys. Chem. Solids 71, 12–17 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Hlinka, M. Kempa, J. Kulda, P. Bourges, A. Kania, J. Petzelt, Lattice dynamics of ferroelectric PbTiO3 by inelastic neutron scattering. Phys. Rev. B 73, 140101 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Tomeno, J.A. Fernandez-Baca, K.J. Marty, K. Oka, Y. Tsunoda, Simultaneous softening of acoustic and optical modes in cubic PbTiO3. Phys. Rev. B 86, 134306 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Shigematsu, H. Nakadaira, T. Futatsugi, T. Matsui, Ti-isotope effect on ferroelectric phase transition of PbTiO3 studied by heat capacity measurement. Thermochim. Acta 352–353, 43–46 (2000)CrossRefGoogle Scholar
  5. 5.
    N. Jaouen, A.C. Dhaussy, J.P. Itié, A. Rogalev, S. Marinel, Y. Joly, High-pressure dependent ferroelectric phase transition in lead titanate. Phys. Rev. B 75, 224115 (2007)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, D. Xiao, Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1–xLaxFeO3 ceramics. J. Alloys Compd. 546, 57–62 (2013)CrossRefGoogle Scholar
  7. 7.
    G.S. Szabó, R.E. Cohen, H. Krakauer, First-principles study of piezoelectricity in PbTiO3. Phys. Rev. Lett. 80, 4321 (1998)CrossRefGoogle Scholar
  8. 8.
    J. Chen, H. Shi, G. Liu, J. Cheng, S. Dong, Temperature dependence of dielectric, piezoelectric and elastic properties of BiScO3–PbTiO3 high temperature ceramics with morphotropic phase boundary (MPB) composition. J. Alloys Compd. 537, 280–285 (2012)CrossRefGoogle Scholar
  9. 9.
    D.D. Shah, P.K. Mehta, M.S. Desai, C.J. Panchal, Origin of giant dielectric constant in Ba[(Fe1–xCox)1/2Nb1/2]O3. J. Alloys Compd. 509, 1800–1808 (2011)CrossRefGoogle Scholar
  10. 10.
    J.S. Forrester, J.S. Zobec, D. Phelan, E.H. Kisi, Synthesis of PbTiO3 ceramics using mechanical alloying and solid state sintering. J. Solid State Chem. 177, 3553–3559 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Alguero, P. Ramos, R. Jimenez, H. Amorin, E. Vila, A. Castro, High temperature piezoelectric BiScO3–PbTiO3 synthesized by mechanochemical methods. Acta Mater. 60, 1174–1183 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Wu, R.E. Cohen, Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Phys. Rev. Lett. 95, 037601 (2005)CrossRefGoogle Scholar
  13. 13.
    A.A. Bokov, Recent advances in diffuse ferroelectric phase transitions. Ferroelectrics 131, 49–55 (1992)CrossRefGoogle Scholar
  14. 14.
    A.A. Bokov, L.A. Shpak, I.P. Rayevsky, Diffuse phase transition in Pb(Fe0.5Nb0.5)O3-based solid solutions. J. Phys. Chem. Solids 54, 495–498 (1993)CrossRefGoogle Scholar
  15. 15.
    N. Abdelmoula, H. Chaabane, H. Khemakhem, R. Vonder Mühll, A. Simon, x(Sm0.5Na0.5)xTiO3. Solid State Sci 8, 880–887 (2006)CrossRefGoogle Scholar
  16. 16.
    D.I. Woodward, I.M. Reaney, Electron diffraction of tilted perovskites. Acta Crystallogr. Sect. B 61, 387–399 (2005)CrossRefGoogle Scholar
  17. 17.
    W. Zhao, R. Zuo, F. Li, L. Li, Structural, dielectric, ferroelectric and strain properties in CaZrO3-modified Bi(Mg0.5Ti0.5)O3–PbTiO3 solid solutions. J. Alloys Compd. 591, 218–223 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)CrossRefGoogle Scholar
  19. 19.
    W. Zhong, R.D. King-Smith, D. Vanderbilt, Giant LO-TO Splitting in Perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994)CrossRefGoogle Scholar
  20. 20.
    B.K. Mani, C.M. Chang, I. Ponomareva, Atomistic study of soft-mode dynamics in PbTiO3. Phys. Rev. B 88, 064306 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Burns, B.A. Scott, Lattice modes in ferroelectric perovskites: PbTiO3. Phys. Rev. B 7, 3088 (1973)CrossRefGoogle Scholar
  22. 22.
    C.M. Foster, Z. Li, M. Grimsditch, S.K. Chan, D.J. Lam, Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3. Phys. Rev. B 48, 10160 (1993)CrossRefGoogle Scholar
  23. 23.
    J.A. Sanjurjo, E.L. Cruz, G. Burns, High-pressure Raman study of zone-center phonons in PbTiO3. Phys. Rev. B 28, 7260 (1983)CrossRefGoogle Scholar
  24. 24.
    C. Sun, J. Wang, P. Hu, M.J. Kim, X. Xing, Effects of Al substitution on the spontaneous polarization and lattice dynamics of the PbTi1–xAlxO3. Dalton Trans. 39, 5183 (2010)CrossRefGoogle Scholar
  25. 25.
    E.C. Paris, MFC Gurgel, T.M. Boschi, M.R. Joya, P.S. Pizani, A.G. Souza, E.R. Leite, J.A. Varela, E. Longo, Investigation on the structural properties in Er-doped PbTiO3 compounds: a correlation between experimental and theoretical results. J. Alloys Compd. 462, 157–163 (2008)CrossRefGoogle Scholar
  26. 26.
    L. Sun, Y.F. Chen, L. He, C.Z. Ge, D.S. Ding, T. Yu, M.S. Zhang, N.B. Ming, Phonon-mode hardening in epitaxial PbTiO3 ferroelectric thin films. Phys. Rev. B 55, 12218 (1997)CrossRefGoogle Scholar
  27. 27.
    S.M. Cho, H.M. jang, Softening and mode crossing of the lowest-frequency A1(transverse-optical) phonon in single-crystal PbTiO3. Appl. Phys. Lett. 76, 3014–3016 (2000)CrossRefGoogle Scholar
  28. 28.
    D. Wu, A. Li, N. Ming, Dielectric characterization of Bi3.25La0.75Ti3O12 thin films. Appl. Phys. Lett. 84, 4505–4507 (2004)CrossRefGoogle Scholar
  29. 29.
    H. Gu, Y. Hu, J. You, Z. Hu, Y. Yuan, T. Zhang, Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J. Appl. Phys. 101, 024319 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Bhaskar, S.B. Majumder, R.S. Katiyara, Diffuse phase transition and relaxor behavior in (PbLa)TiO3 thin films. Appl. Phys. Lett. 80, 3997 (2002)CrossRefGoogle Scholar
  31. 31.
    A. Singh, R. Chatterjee, Multiferroic properties of La-Rich BiFeO3-PbTiO3 solid solutions. Ferroelectrics 433, 180 (2012)CrossRefGoogle Scholar
  32. 32.
    X.P. Jiang, J.W. Fang, H.R. Zeng, B.J. Chu, G.R. Li, D.R. Chen, Q.R. Yin, The influence of PbZrO3/PbTiO3 ratio on diffuse phase transition of Pb(Zn1/3Nb2/3)O3–PbZrO3–PbTiO3 system near the morphotropic phase boundary. Mater. Lett. 44, 219–222 (2000)CrossRefGoogle Scholar
  33. 33.
    T. Nakamura, M. Takashige, Diffuse phase transition and low temperature dielectric constant in PbTiO3. Ferroelectrics 108, 159–164 (1990)CrossRefGoogle Scholar
  34. 34.
    J. Chen, Y. Qi, G. Shi, X. Yan, S. Yu, J. Cheng, Diffused phase transition and multiferroic properties of 0.57(Bi1–xLax)FeO3–0.43PbTiO3 crystalline solutions. J. Appl. Phys. 104, 064124 (2008)CrossRefGoogle Scholar
  35. 35.
    W. Ji, X. He, W. Cheng, P. Qiu, X. Zeng, B. Xia, D. Wang, Effect of La content on dielectric, ferroelectric and electro-optic properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 transparent ceramics. Ceram. Int 41, 1950–1956 (2015)CrossRefGoogle Scholar
  36. 36.
    I.A. Santos, J.A. Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J. Phys. 13, 11733 (2001)Google Scholar
  37. 37.
  38. 38.
    J.F. Scott, Ferroelectrics go bananas. J. Phys. 20, 021001 (2008)Google Scholar
  39. 39.
    A.J. Priyanka, K.J. Pardeep, A.K. Jha, R.K. Kotnala, R.K. Drivedi, Phase transformation and two-mode phonon behavior of (1 – x)[BaZr0.025Ti0.975O3]–(x) [BiFeO3] solid solutions. J. Alloys Compd. 600, 186–192 (2014)CrossRefGoogle Scholar
  40. 40.
    A.K. Yadav, P. Rajput, O. Alshammari, M. Khan, Anita, G. Kumar, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1–xFex)O3. J. Alloys Compd. 701, 619–625 (2017)CrossRefGoogle Scholar
  41. 41.
    F.A. Kröger, H.J. Vink, in Solid State Physics, ed. by S. Frederick, T. David. Relations Between the Concentrations of Imperfections in Crystalline Solids, vol 3 (Academic Press, New York, 1956), pp. 307–435Google Scholar
  42. 42.
    N. Yuji, M. Ichiro, G. Yu, M. Masaru, Defect control for large remanent polarization in bismuth titanate ferroelectrics—doping effect of higher-valent cations. Jpn. J. Appl. Phys. 39, L1259–L1262 (2000)CrossRefGoogle Scholar
  43. 43.
    K. Sunil, K.B.R. Verma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. J. Phys. D 42, 075405 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Arun Kumar Yadav
    • 1
  • Anita
    • 1
  • Sunil Kumar
    • 1
  • V. Raghavendra Reddy
    • 3
  • Parasharam M. Shirage
    • 1
    • 2
  • Sajal Biring
    • 4
  • Somaditya Sen
    • 1
    • 2
  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of TechnologyIndoreIndia
  2. 2.Discipline of PhysicsIndian Institute of TechnologyIndoreIndia
  3. 3.UGC-DAE Consortium for Scientific Research, University CampusIndoreIndia
  4. 4.Electronic EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan

Personalised recommendations