Skip to main content
Log in

Impedance and DC resistivity studies on chromium substituted cobalt ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline chromium substituted cobalt ferrite has been prepared by the sol–gel method. XRD analysis reveals that the samples crystallize to cubic symmetry with \(Fd\stackrel{-}{3}m\) spacegroup. Two transition temperatures (T D ~450 and T M ~600 K) have been observed from the impedance versus temperature measurement. T D increases with the increase in frequency due to dipole response to the frequency. T M is comparable with the para-ferrimagnetic transition temperature of cobalt ferrite, which is independent of frequency. This result is well supported by the temperature dependent DC resistivity measurement. The modified Debye relaxation could explain the impedance spectra of CoFe2−xCrxO4. The grain and grain boundary effect on impedance spectroscopy has been observed from Cole–Cole analysis. The ac conductivity follows Arrhenius behavior at different frequencies. All the samples exhibit the negative temperature coefficient of resistance behavior which reveals the semiconducting behavior of the material. The Mott VRH model could explain the DC electrical resistivity. Both ac impedance and DC resistivity are well co-related with each other to explain the electron transport properties in Cr substituted cobalt ferrite. The electrical transport properties could be explained by the electron hopping between different metal ions via oxygen in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Verma, J. Chand, M. Singh, Adv. Mat. Lett. 4, 310 (2013)

    Article  Google Scholar 

  2. A. Mandal, C. Kumar Das, J. Electron. Mater. 42, 121 (2013)

    Article  Google Scholar 

  3. L.M. Salah, A. M. Moustafa, I.S.A. Farag, Ceram. Int. 38, 5605 (2012)

    Article  Google Scholar 

  4. A.A. Kadam, S.S. Shinde, S.P. Yadav, P. S. Patil, K.Y. Rajpure, J. Magn. Magn. Mater. 329, 59 (2013)

    Article  Google Scholar 

  5. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 084321 (2012)

    Article  Google Scholar 

  6. R.S. deBiasi, A.B.S. Figueiredo, A.A.R. Fernandes, C. Larica, Solid State Commun. 144, 15 (2007)

    Article  Google Scholar 

  7. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. 14, 3221 (2002)

    Google Scholar 

  8. R. Valenzuela, Phys. Res. Int. 2012:1 (2012)

    Article  Google Scholar 

  9. X.H. Huang, Z.H. Chen, Solid State Commun. 132, 845 (2004)

    Article  Google Scholar 

  10. S. Gyergyek, D. Makovec, A. Kodre, I. Arcon, M. Drofenik, J. Nanopart. Res. 12, 1263 (2010)

    Article  Google Scholar 

  11. R.M. Bozorth, E.F. Tilden, A.J. Williums, Phys. Rev. 99, 1788 (1955)

    Article  Google Scholar 

  12. K. Borah, N.S. Bhattacharyya, Miniaturized patch antennas on magnetodielectric substrate for X band communications. IEEE 978-1-4244-9190-2$411 (2011)

  13. M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171 (2000)

    Article  Google Scholar 

  14. K. Krieble, C.C.H. Lo, Y. Melikhov, J.E. Snyder, J. Appl. Phys 99, 08M912 (2006)

    Article  Google Scholar 

  15. K.K. Bharathi, C.V. Ramana, J. Mater. Res. 26, 584 (2011)

    Article  Google Scholar 

  16. Z. Gu, X. Xiang, G. Fan, F. Li, J. Phys. Chem. C112, 18459 (2008)

    Google Scholar 

  17. F. Cheng, C. Liao, J. Kuang, Z. Xu, C. Yan, L. Chen, H. Zhao, Z. Liu, J. Appl. Phys. 85, 2782 (1999)

    Article  Google Scholar 

  18. K.K. Bharathi, K. Balamurugan, P.N. Santhosh, M. Pattabiraman, G. Markandeyulu, Phys. Rev. B77, 172401 (2008)

    Article  Google Scholar 

  19. K.K. Bharathi, R.J. Tackett, C.E. Botez, C.V. Ramana, J. Appl. Phys. 109, 07A510 (2011)

    Article  Google Scholar 

  20. S.D. Bhame, P.A. Joy, J. Appl. Phys 99, 073901 (2006)

    Article  Google Scholar 

  21. R.S. Devan, Y.D. Kolekar, B.K. Chougule, J. Phys. 18, 9809 (2006)

    Google Scholar 

  22. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 115028 (2009)

    Article  Google Scholar 

  23. I.H. Gul, A. Maqsood, J. Alloys Compd. 465, 227 (2008)

    Article  Google Scholar 

  24. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)

    Article  Google Scholar 

  25. A. Rahman, M.A. Rafiq, S. Karim, K. Maaz, M. Siddique, M.M. Hasan, J. Phys. D 44, 165404 (2011)

    Article  Google Scholar 

  26. H.M. Zaki, J. Alloys Compd. 439, 1 (2007)

    Article  Google Scholar 

  27. S. Thakur, S.C. Katyal, Appl. Phys. Lett. 91, 262501 (2007)

    Article  Google Scholar 

  28. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  29. M. Raghasudha, D. Ravinder, P. Veerasomaiah, J. Nanostruct. Chem. 3, 63 (2013)

    Google Scholar 

  30. L. Kumar, P. Kumar, M. Kar, J. Alloys Compd. 551, 72 (2013)

    Article  Google Scholar 

  31. L. Kumar, P. Kumar, M. Kar, J. Mater. Sci. Mater. Electron. 24, 2706 (2013).

    Article  Google Scholar 

  32. L. Kumar, P. Kumar, M. Kar, Phys. Express 3, 21 (2013)

    Google Scholar 

  33. L. Kumar, P. Kumar, M. Kar, Appl. Nanosci. 3, 75 (2013).

    Article  Google Scholar 

  34. B.D. Cullity, S.R. stock, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1978), pp. 388–390

    Google Scholar 

  35. C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D.J. Djayaprawira, M. Takahashi, R.J. Joseyphus, A. Narayanasamy, Appl. Phys. Lett. 83, 2862 (2003)

    Article  Google Scholar 

  36. A.M. Cojocariu, M. Soroceanu, L. Hrib, V. Nica, O.F. Caltun, Mater. Chem. Phys. 135, 728 (2012)

    Article  Google Scholar 

  37. A. Khan, M.A. Bhuiyan, G.D. Al-quaderi, K.H. Maria, S.C. Kazi, Md..A. Hossain, S. Akther, D.K.M. Saha, J. Bangladesh Acad. Sci. 37(1), 73 (2013)

    Article  Google Scholar 

  38. S. Imine, F. Schoenstein, S. Mercone, M. Zaghrioui, N. Bettahar, N. Jouini, J. Eur. Ceram. Soc. 31, 2943 (2011)

    Article  Google Scholar 

  39. E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005)

    Book  Google Scholar 

  40. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, J. Alloys Compd. 587, 50 (2014)

    Article  Google Scholar 

  41. M. Hashim, S. Alimuddin, Kumar, B.H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloys Compd. 518, 11 (2012)

    Article  Google Scholar 

  42. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  43. A. M. Shaikh, S. S. Bellard, B. K. Chougule, J. Magn. Magn. Mater. 195, 384 (1999)

    Article  Google Scholar 

  44. Md..T. Rahman, M. Vargas, C.V. Ramana, J. Alloys Compd. 617, 547 (2014)

    Article  Google Scholar 

  45. J.P. Zhou, L. Lv, X.-Z. Chen, J. Ceram. Process. Res. 11–2, 263 (2010)

    Google Scholar 

  46. Md.T. Rahman, C.V. Ramana, J. Appl. Phys. 116, 164108 (2014)

    Article  Google Scholar 

  47. Y.D. Kolekar, L. Sanchez, E.J. Rubio, C.V. Ramana, Solid State Commun. 184, 34 (2014)

    Article  Google Scholar 

  48. V. L. Mathe, R. B. Kamble, Mater. Res. Bull. 43, 2160 (2008)

    Article  Google Scholar 

  49. C. Nlebedim, Y. Melikhov, D.C. Jiles, J. Appl. Phys. 115, 043903 (2014)

    Article  Google Scholar 

  50. E. Erdem, Hybrid Mater. 1, 62 (2014)

    Google Scholar 

  51. P. Pandit, S. Satapathy, P.K. Gupta, Phys. B 406, 2669 (2011)

    Article  Google Scholar 

  52. A.K. Joncher, J. Mater. Sci. 16, 2037 (1981)

    Article  Google Scholar 

  53. N. Rezlescu, E. Rezlescu, Phys. Status Solidi 23, 575 (1974)

    Article  Google Scholar 

  54. W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, J. Phys. Chem. 135, 054501 (2011)

    Article  Google Scholar 

  55. M. Kar, S. Ravi, Mater. Sci. Eng. B 110, 46 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Council of Scientitific Industrial Research, Department Of Science & Technology and Department of Atomic Energy, India vide sanction number 03/1183/10/EMR-II, SR/FTP/PS-103/2009 and 2011/20/37P/03/BRNS/007 respectively for financial assistance and also UGC-ref. No.: 4050/ (NET-June 2013) for JRF.The authors also acknowledge IIT Patna for providing the working platform. Authors are thankful to Dr. Anup Keshri, Department of Materials Sceince Engineering, IIT Patna for his help for hardness testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, S., Kumar, S. & Kar, M. Impedance and DC resistivity studies on chromium substituted cobalt ferrite. J Mater Sci: Mater Electron 28, 10652–10673 (2017). https://doi.org/10.1007/s10854-017-6841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6841-6

Keywords

Navigation