Skip to main content
Log in

Doping effect of Ta5+ ions on microstructure and electrical properties of BaTiO3–(Bi0.5Na0.5)TiO3 ceramics with positive temperature coefficient of resistivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free 0.912Ba0.97TiO3–0.088(Bi0.5Na0.5)TiO3xTa2O5 (0 ≤ x ≤ 0.005) ceramics with positive temperature coefficient of resistivity (PTCR) were prepared by solid reaction sintering of high-purity metal oxides and carbonates reagents. The doping effect of Ta5+ ions on the microstructure and electrical properties of the samples was investigated. X-ray diffraction analysis indicated that all the samples were of a single tetragonal perovskite structure with the calculated c/a value first increased and then decreased with increasing x. The Raman shift at 305 cm−1 became strong firstly and then declined, and the broad band at 722 cm−1 narrowed initially and then broadened with the increase in Ta5+ content. The Curie temperature raised first and then decreased, presenting the highest value up to 170 °C for the samples with x = 0.001. Moreover, after the incorporation of Ta5+ ions, the PTCR (defined by the resistivity jump with the ratio of maximum to minimum ones) decreased first and then increased, presenting the best PTCR performance for the samples with x = 0.005. And with increasing x, the room temperature resistivity decreased first and then increased, displaying the lowest room temperature resistivity for the samples with x = 0.003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Shimada, K. Touji, Y. Katsuyama, H. Takeda, T. Shiosaki, J. Eur. Ceram. Soc. 27, 3877 (2007)

    Article  Google Scholar 

  2. L.F. Chen, T.Y. Tseng, IEEE Trans. Compon. Packag. Manuf. Technol. A 19, 423 (1996)

    Article  Google Scholar 

  3. H. Takeda, T. Shimada, Y. Katsuyama, T. Shiosaki, J. Electroceram. 22, 263 (2009)

    Article  Google Scholar 

  4. W.R. Huo, Y.F. Qu, Sens. Actuators A 128, 265 (2006)

    Article  Google Scholar 

  5. Q.B. Yuan, Y.P. Pu, J.F. Wei, J. Electroceram. 30, 98 (2013)

    Article  Google Scholar 

  6. Y.P. Pu, J.F. Wei, Y.Q. Mao, J.F. Wang, J. Alloy. Compd. 498, L5 (2010)

    Article  Google Scholar 

  7. M.M. Yang, Z.J. Peng, C.B. Wang, X.L. Fu, Ceram. Int. 42, 17792 (2016)

    Article  Google Scholar 

  8. H.D. Wu, Y.P. Pu, Z. Wang, K. Chen, Mater. Lett. 76, 222 (2012)

    Article  Google Scholar 

  9. H. Hakeda, Y. Hoshi, T.K. Kinoshita, T. Shishido, T. Nishida, T. Shiosaki, Ceram. Int. 34, 2073 (2008)

    Article  Google Scholar 

  10. J.F. Wei, Y.P. Pu, Y.Q. Mao, G.D. Wu, J. Mater. Sci. 22, 551 (2010)

    Google Scholar 

  11. H.L. Li, J.N. Kang, F. Guo, Y.F. Qu, D.A. Yang, Ceram. Int. 39, 7589 (2013)

    Article  Google Scholar 

  12. C.M. Valot, N. Floquet, J.C. Niepce, Key Eng. Mater. 132–136, 1127 (1997)

    Article  Google Scholar 

  13. C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 8, 04105 (2010)

    Google Scholar 

  14. C. Ma, X. Tan, Solid State Commun. 150, 1497 (2010)

    Article  Google Scholar 

  15. Q.B. Yuan, Y.P. Pu, Ceram. Int. 39, 3507 (2013)

    Article  Google Scholar 

  16. J.J. Zhao, Y.P. Pu, P.P. Zhang, L. Cheng, S.J. Li, L. Feng, Ceram. Int. 41, 4735 (2015)

    Article  Google Scholar 

  17. A. Scalabrin, A.S. Chaves, D.S. Shin, S.P.S. Porto, Phys. Status Solidi 79, 731 (1977)

    Article  Google Scholar 

  18. L.H. Robins, D.L. Kaiser, L.D. Rotter, P.K. Schenck, J. Appl. Phys. 76, 74 (1994)

    Article  Google Scholar 

  19. F. Zhang, X.W. Zhu, Q. Xu, W.Z. Jiang, X. Zhou, Ferroelectrics 404, 213 (2010)

    Article  Google Scholar 

  20. E. Brzozowski, M.S. Castro, C.R. Foschini, B. Stojanovic, Ceram. Int. 28, 773 (2002)

    Article  Google Scholar 

  21. M.L. Liu, D.A. Yang, Y.F. Qu, J. Alloy. Compd. 508, 559 (2010)

    Article  Google Scholar 

  22. J.Q. Qi, Z.L. Gui, Y.L. Wang, Q. Zhu, Y.J. Wu, L.T. Li, Ceram. Int. 28, 141 (2002)

  23. Z.C. Li, H. Zhang, X. Zou, B. Bergman, Mater. Sci. Eng. B 116, 34 (2005)

    Article  Google Scholar 

  24. M.L. Liu, D.A. Yang, Y.F. Qu, J. Alloy. Compd. 496, 449 (2010)

    Article  Google Scholar 

  25. G.A. Smolenskii, J. Phys. Soc. Jpn. 28, 26 (1970)

    Google Scholar 

  26. Y.P. Pu, H.D. Wu, J.F. Wei, Sens. Actuators A 173, 158 (2012)

    Article  Google Scholar 

  27. B. Li, Inorganic Dielectric Material, 1st edn. (National Defence Industry Press, Beijing, 1980), p. 263

    Google Scholar 

  28. Y.P. Pu, H.D. Wu, J.F. Wei, B. Wang. J. Mater. Sci. 22, 1479 (2011)

    Google Scholar 

  29. S.L. Leng, G.R. Li, L.Y. Zheng, W. Shi, Y. Zhu, J. Mater. Sci. 24, 431 (2013)

    Google Scholar 

  30. H.T. Langhammer, D. Makovec, Y.P. Pu, H.P. Abicht, M. Drofenik, J. Am. Ceram. Soc. 26, 2899 (2006)

    Article  Google Scholar 

  31. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  32. D.C. Sinclair, A.R. West, J. Mater. Sci. 29, 6061 (1994)

    Article  Google Scholar 

  33. J.Q. Qi, Z.L. Gui, Y.J. Wu, L.T. Li, Sens. Actuators A 93, 84 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674035, 61274015, and 11274052), and Excellent Adviser Foundation in China University of Geosciences from the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Xiuli Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wang, C., Peng, Z. et al. Doping effect of Ta5+ ions on microstructure and electrical properties of BaTiO3–(Bi0.5Na0.5)TiO3 ceramics with positive temperature coefficient of resistivity. J Mater Sci: Mater Electron 28, 10589–10595 (2017). https://doi.org/10.1007/s10854-017-6833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6833-6

Keywords

Navigation