Skip to main content
Log in

Synthesis of AgO–TiO2 nanocomposite through a simple method and its antibacterial activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2017

Abstract

In this research, AgO–TiO2 nanocomposites have been synthesized through a simple method. Besides, silver nitrate, and tetra-n-butyl titanate, as starting reagents were applied. The as-synthesized products were characterized by powder X-ray diffraction analysis, scanning electron microscopy, vibrating sample magnetometer, fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy techniques. Furthermore, antibacterial effects of synthesized AgO–TiO2 nanoparticles against Escherchia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) were studied by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, using micro broth dilution method according to Clinical and Laboratory Standards Institute (CLSI) guidelines. The MIC and MBC values of AgO–TiO2 nanoparticles were found to be 24 and 48 µg/ml for E. coli and 24 and 24 µg/ml for S. aureus respectively. Theses result showed our synthesized nanoparticles have efficient antibacterial activity especially against gram positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Rahimi-Nasarabadi, J. Nanostruct. 4, 211 (2014)

    Google Scholar 

  2. A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 9552 (2015)

    Google Scholar 

  3. A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 27, 11946 (2016)

    Google Scholar 

  4. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci.: Mater. Electron. 27, 11691 (2016)

    Google Scholar 

  5. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh Faal, S. Bagheri, Adv. Powder Technol. 27, 2066 (2016)

    Article  Google Scholar 

  6. G. He, H. Fan, Z. Wang, Opt. Mater. 38, 145 (2014)

    Article  Google Scholar 

  7. I. Vamvasakis, I. Georgaki, D. Vernardou, G. Kenanakis, G. Katsarakis, J. Sol-Gel Sci. Technol. 76, 120 (2015)

    Article  Google Scholar 

  8. M.A. Fox, M.T. Dulay Heterogeneous photocatalysis, Chem. Rev. 93, 341 (1993)

    Article  Google Scholar 

  9. K. Koci, L. Matejova, L. Obalova, L. Capek, J.C.S. Wu, Sol-Gel Sci. Technol. 76, 621 (2015)

    Article  Google Scholar 

  10. A. Sobhani-Nasab, M. Sadeghi, J. Mater. Sci.: Mater. Electron. 27, 7933 (2016)

    Google Scholar 

  11. A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 27, 1191 (2016)

    Google Scholar 

  12. D. Chandran, L.S. Nair, S. Balachandran, K. Rajendra-Babu, M. Deepa, J. Sol-Gel Sci. Technol. 76, 582–591 (2015)

    Article  Google Scholar 

  13. A. Kay, M. Gratzel, Sol. Energy Mater. Sol. C 44, 99 (1996)

    Article  Google Scholar 

  14. R.J. Gonzalez, R. Zallen, H. Berger, Phys. Rev. B 55, 7014 (1997)

    Article  Google Scholar 

  15. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, Appl. Catal. B 39, 75 (2002)

    Article  Google Scholar 

  16. M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, J. Electrochem. Soc. 150, 488 (2003)

    Article  Google Scholar 

  17. F. Firoozeh, M. Zibaei, Y. Soleimani-Asl, J. Infect. Dev. Ctries. 8(7), 818–822 (2014)

    Article  Google Scholar 

  18. A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, L. Kvitek, Biomaterials 30, 6333 (2009)

    Article  Google Scholar 

  19. F. Mirzajani, A. Ghassempour, A. Aliahmadi, M.A. Esmaeili, Res. Microbiol. 162, 542 (2011)

    Article  Google Scholar 

  20. K. Chamakura, R. Perez-Ballestero, Z.P. Luo, S. Bashir, J.B. Liu, Colloid Surf. B 84, 88 (2011)

    Article  Google Scholar 

  21. Y.N. Li, Y.Z. Sun, Y.S. Zhang, L.P. Du, Y. Sun, Q.H. He, Chin. J. Vac. Sci. Technol. 31, 129 (2011)

    Google Scholar 

  22. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, J. Clust. Sci. 26, 1305 (2015)

    Article  Google Scholar 

  23. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci.: Mater. Electron. 26, 5735 (2015)

    Google Scholar 

  24. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci.: Mater. Electron. 27, 474 (2016)

    Google Scholar 

  25. M. Guzman, J. Dille, S. Godet, Nanomedicine 8, 1 (2012)

    Article  Google Scholar 

  26. Y. Zhou, Y. Kong, S. Kundu, J.D. Cirillo, H. Liang, J. Nanobiotechnol. 10, 19 (2012)

    Article  Google Scholar 

  27. D. Paredes, C. Ortiz, R. Torres, Int. J. Nanomedicine 3, 9 (2014)

  28. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomedicine 2012, 7 (2012)

Download references

Acknowledgements

Authors are grateful to council of Kashan University of Medical Sciences for providing financial support to undertake this work by Grant No. 256450-10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzaneh Firoozeh or Mahdi Yaseliani.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10854-017-7102-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, M., Aetemady, A., Firoozeh, F. et al. Synthesis of AgO–TiO2 nanocomposite through a simple method and its antibacterial activities. J Mater Sci: Mater Electron 28, 10245–10249 (2017). https://doi.org/10.1007/s10854-017-6791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6791-z

Keywords

Navigation