Tunable luminescence and energy transfer properties in Ca2−xNaMg2V3O12:xEu3+ phosphors

  • Lixin Yang
  • Xiaoyun MiEmail author
  • Jiangang Su
  • Huiling Zhang
  • Nengli Wang
  • Zhaohui Bai
  • Xiyan Zhang


Novel broadband luminescence phosphors Ca2−xNaMg2V3O12:xEu3+ have been successfully prepared via the conventional high-temperature solid-state reaction. The effects of concentrations of doped Eu3+ and introducing Li+, K+ on the luminescent properties of phosphor were studied. X-ray diffraction, GSAS structural refinement and photoluminescence spectra were used to characterize the samples. The refinement data ensured where the doped Eu3+ ions occupied the lattice site in the host. Under 355 nm excitation, the emission peak of Ca2NaMg2V3O12:Eu3+ phosphors are located at 610 nm (red) ascribed to the electric dipole transition of Eu3+ from 5D0 → 7F2. In the range of 400–575 nm, Ca2NaMg2V3O12:Eu3+ phosphors have broad emission bands attributed to charge transfer of \({\text{VO}}_4^{3 - }\) group. Energy transfer mechanism, energy transfer efficiency and critical distance (Rc) of \({\text{VO}}_4^{3 - }\) → Eu3+ would be analyzed. The emitting color of Ca2NaMg2V3O12:Eu3+ could be tunable from blue-green to near white light.


Luminescence Intensity Energy Transfer Process Energy Transfer Efficiency Broad Emission Band Energy Transfer Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51602027 and 61307118).

Compliance with ethical standards

Conflict of interest

The authors declare that we have no conflict of interest.


  1. 1.
    Z.G. Xia, J.Q. Zhuang, H.K. Liu, L.B. Liao, J. Phys. D 45, 015302 (2012)CrossRefGoogle Scholar
  2. 2.
    L.L. Han, Y.H. Wang, J. Zhang, Y.Z. Wang, Mater. Chem. Phys. 139, 87 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, X. Zhang, Z. Hao, X. Wang, J. Zhang, Chem. Commun. 47, 10677–10679 (2011)CrossRefGoogle Scholar
  4. 4.
    J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Chol, H.L. Park, G.C. Kim, T.W. Kim, Appl. Phys. Lett. 85(17), 3696 (2004)CrossRefGoogle Scholar
  5. 5.
    F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel, J. Salbeck, Adv. Mater. 12, 130–133 (2000)CrossRefGoogle Scholar
  6. 6.
    T. Mukai, D. Morita, S. Nakamura, J. Cryst. Growth 189, 778–781 (1998)CrossRefGoogle Scholar
  7. 7.
    N. Narendran, Y. Gu, J. Disp. Technol. 1(1), 167–171 (2005)CrossRefGoogle Scholar
  8. 8.
    G. Gundiah, Y. Shimomura, N. Kijima, A.K. Cheetham, Chem. Phys. Lett. 455, 279 (2008)CrossRefGoogle Scholar
  9. 9.
    K.J. Park, M.A. Lim, H.D. Park, Appl. Phys. Lett. 82, 683 (2003)CrossRefGoogle Scholar
  10. 10.
    B. Buijsse, J. Schmidt, I.Y. Chan, et al., Phys. Rev. B 51(10), 6215–6220 (1995)Google Scholar
  11. 11.
    S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama, S. Niikura, Opt. Mater. 33, 323–326 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Pode, A. Band, H. Juneja, S. Dhoble, Phys. Status Solidi (a) 157, 493–498 (1996)Google Scholar
  13. 13.
    T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Kumagai, J. Lumin. 129, 1598 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Blasse, G.J. Dirksen, P. Zhiwu, G. Wehrum, R. Hoppe, Chem. Phys. Lett. 215, 363 (1993)CrossRefGoogle Scholar
  15. 15.
    A.R. Dhobale, M. Mohapatra, V. Natarajan, S.V. Godbole, J. Lumin. 132(293), 449–493 (2012)Google Scholar
  16. 16.
    Y.J. Liang, M. Liu, J. Inorg. Organomet. P. 23, 684–689 (2013)CrossRefGoogle Scholar
  17. 17.
    A.A. Setlur, H.A. Comanzo, A.M. Srivastava, W.W. Beers, J. Electrochem. Soc. 152, H205–H208 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Nakatsuka, Y. Ikuta, A. Yoshiasa, K. Iishi, Acta Crystallogr. E C59, i133–i135 (2003)Google Scholar
  19. 19.
    J.F. Li, K.H. Qiu, J.F. Li, et al., J. Electrochem. Soc. 152(12), 205–208 (2005)Google Scholar
  20. 20.
    B. Blanzat, J. Loriers, Mater. Res. Bull. 9, 1647 (1974)CrossRefGoogle Scholar
  21. 21.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  22. 22.
    R.A. Young (ed.), The Rietveld Method (Oxford University Press, New York, 1993)Google Scholar
  23. 23.
    Z. Zhou, F.C. Wang, S.Q. Liu, K.L. Huang, Z. Li, S.B. Zeng, K.M. Jiang, J. Electrochem. Soc. 158, H1238–H1241 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Yan, X.Q. Su, J. Noncryst. Solids 352, 3275–3279 (2006)CrossRefGoogle Scholar
  25. 25.
    G. Blasse, Luminescence and Energy Transfer (Springer, Berlin, 2006), pp. 1–41Google Scholar
  26. 26.
    Y.L. Huang, Y.M. Yu, T. Tsuboi, H.J. Seo, J. Opt. Soc. Am. B 20(4), 4360–4368 (2012)Google Scholar
  27. 27.
    P. Dorenbos, J. Lumin. 99, 283–299 (2002)CrossRefGoogle Scholar
  28. 28.
    W. Xu, H.W. Song, D.T. Yan, H.C. Zhu, Y. Wang, S. Xu, X. Bai, B. Dong, Y.X. Liu, J. Mater. Chem. 21, 12331–12336 (2011)CrossRefGoogle Scholar
  29. 29.
    H.C. Sun, L.K. Pan, G. Zhu, X.Q. Piao, L. Zhang, Z. Sun, Dalton. Trans. 43, 14936 (2014).CrossRefGoogle Scholar
  30. 30.
    X.Y. Mi, J.C. Sun, P. Zhou, H.Y. Zhou, D. Song, K. Li, M.M. Shang, J. Lin, J. Mater. Chem. C 3, 4471–4481 (2015)CrossRefGoogle Scholar
  31. 31.
    W.S. Zhang, H.J. Seo, J. Alloys Compd. 509, 2007–2010 (2011)CrossRefGoogle Scholar
  32. 32.
    M.J. You, J.Y. Xun, Z.J. Zhang, Y. Zhou, J. Ceram. Int. 40, 16189–16194 (2014).CrossRefGoogle Scholar
  33. 33.
    G. Blasse, A. Bril, J. Chem. Phys. 47, 5442 (1967)CrossRefGoogle Scholar
  34. 34.
    J.G. Su, X.Y. Mi, J.C. Sun, L.X. Yang, C.L. Hui, L.P. Lu, Z.H. Bai, X.Y. Zhang, J. Mater. Sci. 52, 782–792 (2017)CrossRefGoogle Scholar
  35. 35.
    J.C. Sun, X.Y. Mi, L.J. Lei, X.Y. Pan, S.Y. Chen, Z. Wang, Z.H. Bai, X.Y. Zhang, CrystEngComm 17, 7888–7895 (2015)CrossRefGoogle Scholar
  36. 36.
    Y.M. Chen, G.X. Wang, X. Shen, T.F. Xu, R.P. Wang, L.C. Wu, Y.G. Lu, J.J. Li, S.X. Dai, Q.L. Nie, CrystEngComm 16, 757 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Chen, Z.G. Xia, M. Yi, X.C. Wu, H. Xin, J. Phys. Chem. Solids 74, 1439–1443 (2013)CrossRefGoogle Scholar
  38. 38.
    P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, K.R.M. Warrier, J. Phys. Chem. Solids 64, 841–846 (2003)CrossRefGoogle Scholar
  39. 39.
    A. Zhamu, G.R. Chen, C.G. Liu, D. Neff, Q. Fang, Z.N. Yu, W. Xiong, Y.B. Wang, X.Q. Wang, B.Z. Jang, Energy Environ. Sci. 5, 5701 (2012)CrossRefGoogle Scholar
  40. 40.
    Z.Y. Hou, G.G. Li, H.Z. Lian, J. Lin, J. Mater. Chem. 22, 5254 (2012)CrossRefGoogle Scholar
  41. 41.
    X.Y. Mi, H. Shi, Z. Wang, L.J. Xie, H.Y. Zhou, J.G. Su, J. Lin, J. Mater. Sci. 51, 3545–3554 (2016). doi: 10.1007/s10853-015-9674-9 CrossRefGoogle Scholar
  42. 42.
    X.Y. Mi, K. Du, K. Huang, P. Zhou, D.L. Geng, Y. Zhang, M.M. Shang, J. Lin, Mater. Res. Bull. 60, 72–78 (2014)CrossRefGoogle Scholar
  43. 43.
    G. Blasse, Philips Res. Rep. 24, 131–134 (1969)Google Scholar
  44. 44.
    B.M. Antipeuko, I.M. Bataev, V.L. Ermolaev, E.I. Lyubimov, T.A. Privalova, Opt. Spectrosc. 29, 177 (1970)Google Scholar
  45. 45.
    D.L. Dexter, J.A. Schulman, J. Chem. Phys. 22, 1063–1071 (1954)CrossRefGoogle Scholar
  46. 46.
    C. Hsu, R.C. Powell, J. Lumin. 10, 273 (1975)CrossRefGoogle Scholar
  47. 47.
    D.Q. Chen, Y.L. Yu, P. Huang, H. Lin, Z.F. Shan, L.W. Zeng, A.P. Yang, Y.S. Wang, Phys. Chem. Chem. Phys. 12, 7775–7778 (2010)CrossRefGoogle Scholar
  48. 48.
    Y.J. Li, C.X. Quan, Z.W. Zhang, C.M. Yang, J. Phys. Chem. C 112, 12777–12785 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lixin Yang
    • 1
  • Xiaoyun Mi
    • 1
    Email author
  • Jiangang Su
    • 1
  • Huiling Zhang
    • 1
  • Nengli Wang
    • 1
  • Zhaohui Bai
    • 1
  • Xiyan Zhang
    • 1
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations