Advertisement

Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors

  • Yingfang Zhu
  • Haifu HuangEmail author
  • Wenzheng Zhou
  • Guangxu Li
  • Xianqing Liang
  • Jin GuoEmail author
  • Shaolong Tang
Article

Abstract

Here we demonstrate that graphene oxide (GO) film on Ni foam can be doped with nitrogen atoms and reduced directly at a lower temperature of 90 °C using ammonia solution as reducing agent and nitrogen source. The reduction and nitrogen doping of GO occur simultaneously when GO film on Ni foam is immersed into ammonia solution. The nitrogen doping can be realised and the content of N in graphene film turns out to be rather good as high as 3.60%. When used as binder-free electrode, the resulting graphene film on Ni foam delivers a gravimetric capacitance of 230 F g−1. It also exhibites relatively an outstanding rate capability of 164 F g−1 at 83.3 A g−1 and better cycle stability that capacitance retention maintains at 96.7% of its initial capacitance capacitance after 2000 cycles. The method also provides a universal route for preparing a binder-free graphene-based electrode.

Keywords

Graphene Oxide Reduce Graphene Oxide Nitrogen Doping High Rate Capability Cyclic Voltammetry Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 515710065 and 61264006), the Natural Science Foundation of Guangxi (Grant No. 2013GXNSFGA019007), and the Key Laboratory of Guangxi for Nonferrous Metals and Materials Processing Technology (Grant No. 12-A-01-07).

References

  1. 1.
    J.R. Miller, P. Simon, Science 321, 651 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Burke, J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
  4. 4.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  5. 5.
    P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B. Daffos, P.L. Taberna, Science 351, 691 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Nat. Energy 1, 16070 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  8. 8.
    M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff. Nano Lett. 8, 3498 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516, 78 (2014)Google Scholar
  10. 10.
    L. Liu, Z. Niu, J. Chen, Chem. Soc. Rev. 45, 4340 (2016)CrossRefGoogle Scholar
  11. 11.
    V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12, 518 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508 (2015)CrossRefGoogle Scholar
  13. 13.
    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Zhang, X.S. Zhao, ChemSusChem 5, 818 (2012)CrossRefGoogle Scholar
  15. 15.
    C.C. Hu, K.H. Chang, A. Mingchamp Lin, Y.T. Wu, Nano Lett. 6, 2690 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822 (2010)CrossRefGoogle Scholar
  17. 17.
    X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Mater. Chem. 21, 9319 (2011)CrossRefGoogle Scholar
  18. 18.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 1246501 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 14, 271 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Cao, Z. Yin, H. Zhang, Energy Environ. Sci. 7, 18 (2014).Google Scholar
  21. 21.
    J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Adv. Mater. 24, 4569 (2012)CrossRefGoogle Scholar
  22. 22.
    B.G. Choi, M.H. Yang, W.H. Hong, J.W. Choi, S.H. Yun, ACS Nano 6, 4020 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, Angew. Chem. Int. Ed. 51, 11371 (2012)CrossRefGoogle Scholar
  25. 25.
    A.N. Obraztsov, Nat. Nanotechnol., 4, 212 (2009)CrossRefGoogle Scholar
  26. 26.
    X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 33, 2816 (2011)CrossRefGoogle Scholar
  27. 27.
    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater. 10, 424 (2011)CrossRefGoogle Scholar
  28. 28.
    X. Du, C. Zhou, H.-Y. Liu, Y.-W. Mai, G. Wang, J. Power Sources 241, 460 (2013)CrossRefGoogle Scholar
  29. 29.
    M.D. Stoller, R.S. Ruoff, Energy Environ. Sci., 3, 1294 (2010)CrossRefGoogle Scholar
  30. 30.
    E. Frackowiak, F. Béguin, Carbon 39, 937 (2001)CrossRefGoogle Scholar
  31. 31.
    J. Yang, E. Zhang, X. Li, Y. Yu, J. Qu, Z.Z. Yu, ACS Appl. Mater. Interfaces 8, 2297 (2015)CrossRefGoogle Scholar
  32. 32.
    C.M. Chen, Q. Zhang, X.C. Zhao, B. Zhang, Q.Q. Kong, M.G. Yang, Q.H. Yang, M.Z. Wang, Y.G. Yang, R. Schlögl, J. Mater. Chem. 22, 14076 (2012)CrossRefGoogle Scholar
  33. 33.
    Z.Y. Sui, Y.N. Meng, P.W. Xiao, Z.Q. Zhao, Z.X. Wei, B.H. Han, ACS Appl. Mater. Interfaces 7, 1431 (2015)CrossRefGoogle Scholar
  34. 34.
    L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff. Nano Lett. 12, 1806 (2012)CrossRefGoogle Scholar
  35. 35.
    M.F. El-Kady, S. Veronica, D. Sergey, R.B. Kaner, Science 335, 1326 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Huang, Y. Tang, L. Xu, S. Tang, Y. Du, ACS Appl. Mater. Interfaces 6, 10248 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yingfang Zhu
    • 1
  • Haifu Huang
    • 1
    • 3
    Email author
  • Wenzheng Zhou
    • 1
    • 3
  • Guangxu Li
    • 1
    • 3
  • Xianqing Liang
    • 1
    • 3
  • Jin Guo
    • 1
    • 3
    Email author
  • Shaolong Tang
    • 2
  1. 1.Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and TechnologyGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Nanjing National Laboratory of Microstructures and Jiangsu Key Laboratory for Nanotechnology, Department of PhysicsNanjing UniversityNanjingPeople’s Republic of China
  3. 3.Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations