Skip to main content

Advertisement

Log in

Size dependence electrocatalytic activity of gold nanoparticles decorated reduced graphene oxide for hydrogen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is promising for AuNPs/RGO composites to be exploited for hydrogen evolution reaction (HER), due to the collaborative effects between the electrocatalytic Au nanoparticles (AuNPs) and conductive reduced graphene oxide (RGO). In this work, we used a simple way to decorate AuNPs onto the RGO surface by one pot in situ reduction both HAuCl4 and GO, for which the controlled average size of AuNPs (2.7, 11.5 and 45.7 nm) is adjusting with the mass ratio of HAuCl4 and GO. The obtained materials, AuNPs/RGO composites, show excellent electrocatalytic activity for the HER that critical dependence on the particle size of AuNPs. The results show that AuNPs/RGO with AuNPs size of 11.5 nm exhibits superior electrochemical activity: low onset potential of 0.029 V versus the reversible hydrogen electrode as well as a small Tafel slope of 86 mV per decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.-Q. Han, Y.-R. Liu, W.-H. Hu, B. Dong, X. Li, X. Shang, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, Int. J. Hydrog. Energy 41, 1635 (2016)

    Article  Google Scholar 

  2. R. Rivera-Tinoco, M. Farran, C. Bouallou, F. Auprêtre, S. Valentin, P. Millet, J.R. Ngameni, Int. J. Hydrog. Energy 41, 4546 (2016)

    Article  Google Scholar 

  3. X. Ren, X. Ren, L. Pang, Y. Zhang, Q. Ma, H. Fan, S. Liu, Int. J. Hydrog. Energy 41, 916 (2016)

    Article  Google Scholar 

  4. W. Ye, C. Ren, D. Liu, C. Wang, N. Zhang, W. Yan, L. Song, Y. Xiong, Nano Res. 9, 2662 (2016)

    Article  Google Scholar 

  5. S.L. Wang, D.-H. Kim, S. Yi, Korean J. Chem. Eng. 28, 1672 (2011)

    Article  Google Scholar 

  6. J. Ji, X. Pei, J. Mater. Sci. 27, 5468 (2016)

    Google Scholar 

  7. L. Mihailov, T. Spassov, I. Kanazirski, I. Tsvetanov, J. Mater. Sci. 46, 7068 (2011)

    Article  Google Scholar 

  8. M. Khan, A.B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, Z. Qi, L. Li, Nano Res. 9, 837 (2016)

    Article  Google Scholar 

  9. M. Torabi, A. Dolati, J. Appl. Electrochem. 40, 1941 (2010)

    Article  Google Scholar 

  10. Z. Liu, X. Wang, P. Qiao, Y. Tian, H. Li, J. Yang, J. Mater. Sci. 26, 7153 (2015)

    Google Scholar 

  11. U. Sarac, M.C. Baykul, J. Mater. Sci. 24, 952 (2013)

    Google Scholar 

  12. G. Heidari, S.M. Mousavi Khoie, M.E. Abrishami, M. Javanbakht, J. Mater. Sci. 26, 1969 (2015)

    Google Scholar 

  13. Y. Liu, Y. Zhang, J. Chen, H. Pang, Nanoscale 6, 10989 (2014)

    Article  Google Scholar 

  14. C. Wei, Y. Liu, X. Li, J. Zhao, Z. Ren, H. Pang, ChemElectroChem. 1, 682 (2014)

    Article  Google Scholar 

  15. J. Ye, G. Wang, X. Li, Y. Liu, R. Zhu, J. Mater. Sci. 26, 4683 (2015)

    Google Scholar 

  16. S. Rane, S. Arbuj, S. Rane, S. Gosavi, J. Mater. Sci. 26, 3707 (2015)

    Google Scholar 

  17. J. Ye, Z. Yu, W. Chen, Q. Chen, L. Ma, Int. J. Hydrog. Energy 41, 12049 (2016)

    Article  Google Scholar 

  18. J.-B. Raoof, R. Ojani, A. Kiani, S. Rashid-Nadimi, Int. J. Hydrog. Energy 35, 452 (2010)

    Article  Google Scholar 

  19. S.A. Khan, S.B. Khan, A.M. Asiri, J. Mater. Sci. 27, 5294 (2016)

    Google Scholar 

  20. C. Lamy, T. Jaubert, S. Baranton, C. Coutanceau, J. Power Sources 245, 927 (2014)

    Article  Google Scholar 

  21. S.-J. Li, N. Xia, X.-L. Lv, M.-M. Zhao, B.-Q. Yuan, H. Pang, Sens. Actuators B 190, 809 (2014)

    Article  Google Scholar 

  22. C.-H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu, Y. Tong, J. Power Sources 247, 545 (2014)

    Article  Google Scholar 

  23. D.B. Vasilchenko, S.V. Tkachev, A.Y. Kurenkova, E.A. Kozlova, D.V. Kozlov, Int. J. Hydrog. Energy 41, 2592 (2016)

    Article  Google Scholar 

  24. C. Nithya, S. Gopukumar, J. Mater. Chem. A 2, 10516 (2014)

    Article  Google Scholar 

  25. F.-F. Cheng, W. Chen, L.-H. Hu, G. Chen, H.-T. Miao, C. Li, J.-J. Zhu, J. Mater. Chem. B 1, 4956 (2013)

    Article  Google Scholar 

  26. Y.-G. Huang, H.-l. Fan, Z.-K. Chen, C.-B. Gu, M.-X. Sun, H.-Q. Wang, Q.-Y. Li, Int. J. Hydrog. Energy 41, 3786 (2016)

    Article  Google Scholar 

  27. L. Suo, W. Gao, Y. Du, R. Wang, L. Wu, L. Bi, New J. Chem. 40, 985 (2016)

    Article  Google Scholar 

  28. M.M. Momeni, Y. Ghayeb, F. Mohammadi, J. Mater. Sci. 26, 685 (2015)

    Google Scholar 

  29. G. Darabdhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits, R. Boukherroub, J. Mater. Chem. A 3, 20254 (2015)

    Article  Google Scholar 

  30. S. Mukerjee, J. McBreen, J. Electroanal. Chem. 448, 163 (1998)

    Article  Google Scholar 

  31. M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, J. Am. Chem. Soc. 133, 17428 (2011)

    Article  Google Scholar 

  32. W.P. Zhou, A. Lewera, R. Larsen, R.I. Masel, P.S. Bagus, A. Wieckowski, J. Phys. Chem. B 110, 13393 (2006)

    Article  Google Scholar 

  33. Á. Kmetykó, K. Mogyorósi, P. Pusztai, T. Radu, Z. Kónya, A. Dombi, K. Hernádi, Materials 7, 7615 (2014)

    Article  Google Scholar 

  34. P. Haider, B. Kimmerle, F. Krumeich, W. Kleist, J.-D. Grunwaldt, A. Baiker, Catal. Lett. 125, 169 (2008)

    Article  Google Scholar 

  35. X. Liu, X. Wang, P. He, L. Yi, Z. Liu, X. Yi, J. Solid State Electrochem. 16, 3929 (2012)

    Article  Google Scholar 

  36. Y. Si, E.T. Samulski, Nano Lett. 8, 1679 (2008)

    Article  Google Scholar 

  37. K. Dave, K.H. Park, M. Dhayal, RSC Adv. 5, 107348 (2015)

    Article  Google Scholar 

  38. H. Zhang, D. Hines, D.L. Akins, Dalton Trans. 43, 2670 (2014)

    Article  Google Scholar 

  39. J.T. Miller, A.J. Kropf, Y. Zha, J.R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J.A. van Bokhoven, J. Catal. 240, 222 (2006)

    Article  Google Scholar 

  40. S.H. Overbury, V. Schwartz, D.R. Mullins, W. Yan, S. Dai, J. Catal. 241, 56 (2006)

    Article  Google Scholar 

  41. F.-W. Chang, H.-Y. Yu, L. Selva Roselin, H.-C. Yang, Appl. Catal. A 290, 138 (2005)

    Article  Google Scholar 

  42. Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, D.P. Wilkinson, ACS Catal. 3, 2101 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (Nos. 21271160, 21401170, 20976168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Dong, M., Song, H. et al. Size dependence electrocatalytic activity of gold nanoparticles decorated reduced graphene oxide for hydrogen evolution reaction. J Mater Sci: Mater Electron 28, 10073–10080 (2017). https://doi.org/10.1007/s10854-017-6768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6768-y

Keywords

Navigation