Size dependence electrocatalytic activity of gold nanoparticles decorated reduced graphene oxide for hydrogen evolution reaction

  • Qingxiang Yang
  • Mengguo Dong
  • Haimei Song
  • liu Cao
  • Yan Zhang
  • Lijie Wang
  • Pengbo Zhang
  • Zhijun ChenEmail author


It is promising for AuNPs/RGO composites to be exploited for hydrogen evolution reaction (HER), due to the collaborative effects between the electrocatalytic Au nanoparticles (AuNPs) and conductive reduced graphene oxide (RGO). In this work, we used a simple way to decorate AuNPs onto the RGO surface by one pot in situ reduction both HAuCl4 and GO, for which the controlled average size of AuNPs (2.7, 11.5 and 45.7 nm) is adjusting with the mass ratio of HAuCl4 and GO. The obtained materials, AuNPs/RGO composites, show excellent electrocatalytic activity for the HER that critical dependence on the particle size of AuNPs. The results show that AuNPs/RGO with AuNPs size of 11.5 nm exhibits superior electrochemical activity: low onset potential of 0.029 V versus the reversible hydrogen electrode as well as a small Tafel slope of 86 mV per decade.


Graphene Oxide Glassy Carbon Electrode HAuCl4 Reduce Graphene Oxide Hydrogen Evolution Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the Natural Science Foundation of China (Nos. 21271160, 21401170, 20976168).


  1. 1.
    G.-Q. Han, Y.-R. Liu, W.-H. Hu, B. Dong, X. Li, X. Shang, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, Int. J. Hydrog. Energy 41, 1635 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Rivera-Tinoco, M. Farran, C. Bouallou, F. Auprêtre, S. Valentin, P. Millet, J.R. Ngameni, Int. J. Hydrog. Energy 41, 4546 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Ren, X. Ren, L. Pang, Y. Zhang, Q. Ma, H. Fan, S. Liu, Int. J. Hydrog. Energy 41, 916 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Ye, C. Ren, D. Liu, C. Wang, N. Zhang, W. Yan, L. Song, Y. Xiong, Nano Res. 9, 2662 (2016)CrossRefGoogle Scholar
  5. 5.
    S.L. Wang, D.-H. Kim, S. Yi, Korean J. Chem. Eng. 28, 1672 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Ji, X. Pei, J. Mater. Sci. 27, 5468 (2016)Google Scholar
  7. 7.
    L. Mihailov, T. Spassov, I. Kanazirski, I. Tsvetanov, J. Mater. Sci. 46, 7068 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Khan, A.B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, Z. Qi, L. Li, Nano Res. 9, 837 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Torabi, A. Dolati, J. Appl. Electrochem. 40, 1941 (2010)CrossRefGoogle Scholar
  10. 10.
    Z. Liu, X. Wang, P. Qiao, Y. Tian, H. Li, J. Yang, J. Mater. Sci. 26, 7153 (2015)Google Scholar
  11. 11.
    U. Sarac, M.C. Baykul, J. Mater. Sci. 24, 952 (2013)Google Scholar
  12. 12.
    G. Heidari, S.M. Mousavi Khoie, M.E. Abrishami, M. Javanbakht, J. Mater. Sci. 26, 1969 (2015)Google Scholar
  13. 13.
    Y. Liu, Y. Zhang, J. Chen, H. Pang, Nanoscale 6, 10989 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Wei, Y. Liu, X. Li, J. Zhao, Z. Ren, H. Pang, ChemElectroChem. 1, 682 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Ye, G. Wang, X. Li, Y. Liu, R. Zhu, J. Mater. Sci. 26, 4683 (2015)Google Scholar
  16. 16.
    S. Rane, S. Arbuj, S. Rane, S. Gosavi, J. Mater. Sci. 26, 3707 (2015)Google Scholar
  17. 17.
    J. Ye, Z. Yu, W. Chen, Q. Chen, L. Ma, Int. J. Hydrog. Energy 41, 12049 (2016)CrossRefGoogle Scholar
  18. 18.
    J.-B. Raoof, R. Ojani, A. Kiani, S. Rashid-Nadimi, Int. J. Hydrog. Energy 35, 452 (2010)CrossRefGoogle Scholar
  19. 19.
    S.A. Khan, S.B. Khan, A.M. Asiri, J. Mater. Sci. 27, 5294 (2016)Google Scholar
  20. 20.
    C. Lamy, T. Jaubert, S. Baranton, C. Coutanceau, J. Power Sources 245, 927 (2014)CrossRefGoogle Scholar
  21. 21.
    S.-J. Li, N. Xia, X.-L. Lv, M.-M. Zhao, B.-Q. Yuan, H. Pang, Sens. Actuators B 190, 809 (2014)CrossRefGoogle Scholar
  22. 22.
    C.-H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu, Y. Tong, J. Power Sources 247, 545 (2014)CrossRefGoogle Scholar
  23. 23.
    D.B. Vasilchenko, S.V. Tkachev, A.Y. Kurenkova, E.A. Kozlova, D.V. Kozlov, Int. J. Hydrog. Energy 41, 2592 (2016)CrossRefGoogle Scholar
  24. 24.
    C. Nithya, S. Gopukumar, J. Mater. Chem. A 2, 10516 (2014)CrossRefGoogle Scholar
  25. 25.
    F.-F. Cheng, W. Chen, L.-H. Hu, G. Chen, H.-T. Miao, C. Li, J.-J. Zhu, J. Mater. Chem. B 1, 4956 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.-G. Huang, H.-l. Fan, Z.-K. Chen, C.-B. Gu, M.-X. Sun, H.-Q. Wang, Q.-Y. Li, Int. J. Hydrog. Energy 41, 3786 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Suo, W. Gao, Y. Du, R. Wang, L. Wu, L. Bi, New J. Chem. 40, 985 (2016)CrossRefGoogle Scholar
  28. 28.
    M.M. Momeni, Y. Ghayeb, F. Mohammadi, J. Mater. Sci. 26, 685 (2015)Google Scholar
  29. 29.
    G. Darabdhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits, R. Boukherroub, J. Mater. Chem. A 3, 20254 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Mukerjee, J. McBreen, J. Electroanal. Chem. 448, 163 (1998)CrossRefGoogle Scholar
  31. 31.
    M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, J. Am. Chem. Soc. 133, 17428 (2011)CrossRefGoogle Scholar
  32. 32.
    W.P. Zhou, A. Lewera, R. Larsen, R.I. Masel, P.S. Bagus, A. Wieckowski, J. Phys. Chem. B 110, 13393 (2006)CrossRefGoogle Scholar
  33. 33.
    Á. Kmetykó, K. Mogyorósi, P. Pusztai, T. Radu, Z. Kónya, A. Dombi, K. Hernádi, Materials 7, 7615 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Haider, B. Kimmerle, F. Krumeich, W. Kleist, J.-D. Grunwaldt, A. Baiker, Catal. Lett. 125, 169 (2008)CrossRefGoogle Scholar
  35. 35.
    X. Liu, X. Wang, P. He, L. Yi, Z. Liu, X. Yi, J. Solid State Electrochem. 16, 3929 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Si, E.T. Samulski, Nano Lett. 8, 1679 (2008)CrossRefGoogle Scholar
  37. 37.
    K. Dave, K.H. Park, M. Dhayal, RSC Adv. 5, 107348 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Zhang, D. Hines, D.L. Akins, Dalton Trans. 43, 2670 (2014)CrossRefGoogle Scholar
  39. 39.
    J.T. Miller, A.J. Kropf, Y. Zha, J.R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J.A. van Bokhoven, J. Catal. 240, 222 (2006)CrossRefGoogle Scholar
  40. 40.
    S.H. Overbury, V. Schwartz, D.R. Mullins, W. Yan, S. Dai, J. Catal. 241, 56 (2006)CrossRefGoogle Scholar
  41. 41.
    F.-W. Chang, H.-Y. Yu, L. Selva Roselin, H.-C. Yang, Appl. Catal. A 290, 138 (2005)CrossRefGoogle Scholar
  42. 42.
    Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, D.P. Wilkinson, ACS Catal. 3, 2101 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Qingxiang Yang
    • 1
  • Mengguo Dong
    • 1
  • Haimei Song
    • 1
  • liu Cao
    • 2
  • Yan Zhang
    • 1
  • Lijie Wang
    • 1
  • Pengbo Zhang
    • 1
  • Zhijun Chen
    • 1
    Email author
  1. 1.School of Material and Chemical Engineering, Henan Provincial Key Laboratory of Surface and Interface ScienceZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China
  2. 2.Jiyuan Institute of Environmental ScienceJiyuanPeople’s Republic of China

Personalised recommendations